AVALANCHEv1

Submitter: Basel Alomair

Designer: Basel Alomair
alomair@uw.edu

2014.03.15

alomair@uw.edu

Chapter 1

Specification

1.1 Parameters

AVALANCHEV1 has three parameters: key length, nonce length, and tag length.
Parameter space: Each parameter is an integer number of bytes. The key length
is either 16 bytes (128 bits), 24 bytes (192 bits), or 32 bytes (256 bits). The
nonce length is less than key length. The tag length is 16 bytes.

1.2 Recommended parameter sets

Throughout the rest of the document, lengths will be measured in bytes and
bits interchangeably.

1. Primary recommended parameter set AVALANCHEv1: 16-byte (128-bit)
key, 10-byte (80-bit) nonce, 16-byte (128-bit) tag.

2. Secondary recommended parameter set AVALANCHEv1: 32-byte (256-bit)
key, 20-byte (160-bit) nonce, 16-byte (128-bit) tag.

3. Third recommended parameter set AVALANCHEv1: 24-byte (192-bit) key,
16-byte (128-bit) nonce, 16-byte (128-bit) tag.

1.3 Authenticated encryption

The inputs to authenticated encryption are a plaintext P, associated data A, and
a key K. The number of bits in N is the nonce length. The number of bits in K
is the key length. Since AVALANCHEvV1 uses two algorithms: an authenticated
cipher (PCMAC of Chapter for P and a MAC (RMAC of Chapter@ for A, K
consists of two independent keysE] one for each algorithm. Let K = (Kp, K4)

n future versions, one key might be used. More analysis is needed, however, to guarantee
that security of AVALANCHEV1 is not compromised.

be the AVALANCHEvV1 key, where Kp is the key for the authenticated cipher
to process P and K4 be the key for the MAC to process A. The number of
bits in P is dependent on the key length and the nonce length. In particular,
PCMAC utilizes the use of a counter, ¢, that is of length |c¢| = |K| — |N|; the
length of P is at most 128 - (2/¢/ — 1) bits. There is no constraint on the length
of A. There are no secret or public message numbers; i.e., the secret and public
message numbers are empty.

The output of authenticated encryption is a tuple (N, A, C,T) obtained by
concatenating a nonce N, the associated data A, the ciphertext C' and the
authentication tag 7. The ciphertext C is obtained by encrypting P with the
PCMAC mode of encryption of Chapter |8, so the number of bytes in C equals
the number of bytes in P plus one cipher block, i.e., 16-bytes (see Chapter
for detailed description of PCMAC). The tag T is an authenticator of P and
A obtained by xoring the authentication tag of P (the output of PCMAC of
Chapter [8) and the authentication tag of A (the output of RMAC of Chapter
E[); the number of bytes in T is the tag length.

Details are as follows. On input a plaintext-associated data pair (P, A),
AVALANCHEv1 will call PCMAC to produce a nonce-ciphertext-tag tuple (N, C, 7p)
for the plaintext P. Simultaneously, A will be passed to RMAC to produce an
authentication tag 74. The resulting tag T' will be the xor of 7p and 74. That
is, the output of AVALANCHEv1 will be (N, A,C,T =1p ® TA)E|

2Note that RMAC is based on universal hashing, which requires the hashed image to be
xored with a key stream. In our implementation of AVALANCHEv1, since RMAC is used
alongside PCMAC, 7p, the authentication tag outputted by PCMAC is used to encrypt the
hashed image of the associated data in RMAC.

Chapter 2

Security (soals

There is no secret or public message numbers. The cipher does not promise any
integrity or confidentiality if the legitimate key holder uses the same nonce to
encrypt two different plaintexts under the same key.

The numbers in the table are actually on different scales. Integrity level is
measured by the expected number of online forgery attempts for a successful
forgery, while confidentiality is measured by the expected number of key guesses
to find the secret key. Any successful forgery or successful key guess should be
assumed to completely compromise confidentiality and integrity of all messages.

While there is no limit for the length of the associated data, Table as-
sumes legitimate key holder does not encrypt a plaintext exceeding the maxi-
mum size specified in Section |1.3[(= 2°° bits for AVALANCHE128v1, ~ 2103 bits
for AVALANCHE256v1, and ~ 27! bits for AVALANCHE192v1).

Table 2.1: Security of different versions of AVALANCHEv1.

AVALANCHE128v1 AVALANCHE192v1 AVALANCHE256v1
Goal bits of security bits of security bits of security
confidentiality of P 128 192 256
integrity of P 127 127 127
integrity of A 120 120 120

Chapter 3

Security Analysis

The current version of AVALANCHE uses AES as the underlying blockcipher.
Hence, security is based on the security of AES. In particular, as can be seen
in the security analysis in Chapters [§ and [9} security is based on the property
that the output of AES is indistinguishable from a random sequence.

Chapter 4

Features

The main advantage of this cipher is complete parallelization. That is, the
entire cipher operation can be performed during a single AES call. Below is the
advantages and disadvantages of AVALANCHEv1 compared to AES-GCM.

Advantages: As mentioned above, the main advantage of AVALANCHEv1
is total parallelizability. On the other hand, AES-GCM uses the well-known
two-pass approach of Encrypt-then-MAC (EtM). That is, AES-GCM first en-
crypts using the counter mode of encryption to produce the ciphertext; then,
the ciphertext is authenticated using a standard universal hash-function family
based MAC. Although MACing using universal hashing is quite fast, its time
is non-negligible. AVALANCHEv1, unlike AES-GCM, is a single-pass authen-
ticated cipher: the encryption and authentication are performed on the same
round.

Disadvantage: the main disadvantage of AVALANCHEv1 is that the key
to each blockcipher is different. However, due to the parallelizable nature of
AVALANCHEV1, key scheduling can be performed in parallel for each block.
That is, typically, one will do key scheduling for AES in advanced then use
the key for all blocks. In AVALANCHEV1, the same thing can be done, but for
all blockciphers, which is the same as scheduling for one AES block assuming
parallel computation is available.

Chapter 5

Design Rationale

The main purpose of AVALANCHE is high throughput. This is achieved via
complete parallelization of authenticated encryption. As discussed in the pre-
vious chapter, AVALANCHE has the advantage over AES-GCM in that it is a
single-pass authenticated cipher in which all blockcipher calls can be performed
in parallel. Thus, the total efficitive time of AVALANCHE is one AES call.

Chapter 6

Intellectual Property

At present, there are no patents for either PCMAC nor RMAC. The author,
however, is planning to file patents and will inform the crypto-competitions mail-
ing list of any changes.

Chapter 7

Consent

The submitter hereby consents to all decisions of the CAESAR selection commit-
tee regarding the selection or non-selection of this submission as a second-round
candidate, a third-round candidate, a finalist, a member of the final portfolio,
or any other designation provided by the committee. The submitter under-
stands that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published
analyses that led to the selection of the algorithm. The submitter understands
that the selection of some algorithms is not a negative comment regarding other
algorithms, and that an excellent algorithm might fail to be selected simply
because not enough analysis was available at the time of the committee de-
cision. The submitter acknowledges that the committee decisions reflect the
collective expert judgments of the committee members and are not subject to
appeal. The submitter understands that if he disagrees with published analyses
then he is expected to promptly and publicly respond to those analyses, not to
wait for subsequent committee decisions. The submitter understands that this
statement is required as a condition of consideration of this submission by the
CAESAR selection committee.

Chapter 8

PCMAC

8.1 Notations and Preliminaries

For a binary string s, the length of s in bits is denoted by |s|. For any two
strings a and b, (a||b) denotes any operation that allows the reconstruction of
a and b from (a||b). When the lengths of a and b are known, the concatenation
operation is an example of such operations. For a positive integer 8, {0, 1}5
denotes a binary string of length S-bits, and {0,1}* denotes a binary string of

arbitrary length. For a non-empty set F, we denote by f & F the selection
of a member of F uniformly at random and assigning it to f. Throughout the
rest of the paper, random variables will be represented by bold font symbols,
whereas the corresponding non-bold font symbols represent specific values that
can be taken by these random variables.

8.1.1 blockciphers

Let F: K x D — R be a family of functions from D to R indexed by keys K.
We use Fi (D) as shorthand for F(K, D). F is a family of permutations (i.e. a
blockcipher), if D = R and Fk(+) is a permutation on D for each K € K. If F
is a family of permutations, we use Fy'(-) to denote the inverse of Fi(-) and
we use F~1(-,-) to denote the function that takes as input (K, D) and computes
FH(D).

We adopt the notion of security for blockciphers formalized in [I]. Let
Perm(IC, D) denote the set of all possible blockciphers (permutations) with key

space K and domain D. Then, the notation 7 & Perm(IC, D) corresponds to
selecting a random blockciphers. Given a family of functions E : K x D — D
and a key K € K, define the related-key oracle Erk(. k)(-) as an oracle that
takes two arguments, a function ¢ : £ — K and an element M € D, and that
returns Eyg)(M).

The function ¢ is the related-key-deriving (RKD) function or the key trans-
formation function. Let ® be a set of functions mapping K to K. Then & is

called the set of allowed RKD functions, or allowed key-transformations.

Let £ : K x D — D be a family of functions and let ® be a set of RKD
functions over K. Let A be an adversary with access to a related-key oracle,
and restricted to queries of the form (¢, m) in which ¢ € ® and m € D. Then,

AVET(A) =Pr [K & K APRic00) — 1]
—Pr [K & Kir & Perm(K, D) - ATrxc00) = 1] (8.1)

denotes the prp-rka-advantage of A in distinguishing a random instance of E
from a random permutation using ®-restricted related keys. We say that E
is a secure pseudorandom permutation (prp) against related-key-attacks (rka)
if the prp-rka-advantages of all adversaries using reasonable resources is small.
For simplicity, we do not differentiate between prp-security and sprp-security
(a blockcipher is said to be strong pseudorandom permutation (sprp) if it is
indistinguishable from a random permutation even if the adversary is given an
oracle access to the inverse function).

8.1.2 Security Model

To analyze the proposed system, we will use the standard model used to analyze
authenticated encryption systems (see, e.g., [I6, [IT]). Let £ be the underlying
encryption algorithm. Depending on the mode of operation, £ may or may not
require the use of a nonce for encryption. If the encryption algorithm requires
the use of nonces, the input to the algorithm is a nonce-message pair (N, M);
otherwise, the input to the encryption algorithm is simply a plaintext message
M. The signing oracle internally calls the encryption algorithm and outputs
a ciphertext-tag pair. That is, given an encryption algorithm &, on input a
key K, and a nonce-message pair (N, M), the signing algorithm Sg(K, N, M)
outputs (¢, 7), where ¢ is the ciphertext corresponding to (N, M) and 7 is the
authentication tag.

Given the decryption algorithm D corresponding to £, on input a key K, a
nonce NN, a ciphertext ¢, and an authentication tag 7, the verifying oracle Vp
outputs a bit, with 1 standing for accept and 0 for reject. We ask for a basic
validity condition, namely that authentic tags are accepted with probability one.
That is, if (¢, 7) = Sg(K, N, M), it must be the case that Vp(K, N,¢,7) =1 for
any encryption/decryption algorithms, key K, nonce N, ciphertext ¢, and tag
T.

The adversary is a probabilistic polynomial time algorithm, A. The adver-
sary is given oracle access to algorithms Sg (K, -,) and Vp (K, -, -, -) for a random
but hidden choice of K. A can query Sg to generate a ciphertext-tag pair for
a none-message of its choice and ask the verifier Vp to verify that (N, ¢, 7) is
a valid tuple. Formally, A’s attack on the scheme is described by the following
experiment:

1. A random string is selected as the shared secret, K.

10

2. Suppose A makes a signing query (N, M). The oracle computes (¢, 7) +
Se(K, N, M), the ciphertext-tag pair, and returns it to A.

3. Suppose A makes a verify query (V, ¢, 7). The oracle computes the deci-
sion d = Vp(K, N, ¢,) and returns it to A.

A can query the signing oracle ¢ number of times and record the outputs. A
then stops and attempts its forgery.

An adversary is said to be nonce-respecting if she never repeats a nonce.
That is, after calling Sg on (N, M), the adversary never asks its oracle a query
(N, M'), regardless of the oracle responses. We emphasize, however, that the
nonce used in the forgery attempt may coincide with a nonce used in one of the
adversary’s queries to the signing oracle. The outcome of running the experi-
ment in the presence of an adversary is used to define security. We say that A
is successful if it is nonce-respecting and makes a verify query (N, ¢, 7) which
is accepted, for an (N, ¢, 7) tuple that has not been outputted by the signing
oracle Sg.

8.2 PCMAC: Theoretical Construction

In this section, we give the theory behind what we call “Parity Check MAC
(or PCMAC)” followed by formal security statements and proofs. Although the
theoretical construction might not be of practical interest by itself, the main
purpose of this section is to introduce, and better understand, the main ideas
that will be used in the construction of the practical system in Section [8:3]

8.2.1 Scheme Description

Assume there exists an invertible function, f, that takes arbitrary-length inputs
and produces true random outputs (i.e., an ideal cipher). Let M be the plaintext
message to be authenticated and n be a security parameter agreed upon by
legitimate users. Divide M into k := [lﬁ—[l] blocks, each of length n-bits, except
possibly the k** block. Let o be the n-bit compressed image of M, evaluated as

follows.
k

o= Mli] (mod?2"), (8.2)
i=1
where M][i] denotes the i" block of the message M. (For the rest of the paper,
we overload M[i] to denote both the binary string in the i*® block and its
integer representation in a big-endian format; the distinction between the two
representations will be omitted whenever it is clear from the context.)

Remark 1. We note that one can replace the modular addition with the XOR
operation without affecting the security of the scheme. Just like modular addi-
tion, the set of all possible n-bit strings with the XOR operation form a finite
group, which is all that is needed for the security to hold (as can bee seen in the
formal proofs to follow).

11

Given a plaintext message, M, compute its compressed image according to
equation and generate a string, r, drawn uniformly at random from {0, 1}"
(for the rest of the paper, r will be referred to as the coin tosses of the signing
algorithm). Using the invertible function, f, encrypt the pair (r, M) to get its
corresponding ciphertext

c& f(r, M), (8.3)
The authentication tag of M is simply

T=0c+r (mod2"). (8.4)

The pair (¢, 7) from equations and is then transmitted to the intended
receiver.

Given ¢, the intended receiver inverts (decrypt) the ciphertext to obtain
the plaintext message, M, and the coin tosses, r. The receiver then breaks M
into its n-bit blocks (the M[i]’s), computes the modular summation), M[i] +
r (mod 2™), and authenticates the message if and only if the summation is
congruent to the received tag 7. Formally, the following integrity check must be
satisfied to validate the message

k
T= Z Ml[i]4+r (mod 2"), (8.5)
i=1

where 7 is the received tag while the M[i]’s and r are obtained by decrypting
the ciphertext. In what follows, we show that this simple parity check is indeed
secure, provided the function f is a true random permutation.

8.2.2 Theorem Statements and Proofs
We start by stating a general lemma; the proof can be found in Appendix A.

Lemma 1. In the proposed scheme, authentication tags computed according
to equation are statistically independent of their corresponding plaintext
messages. Furthermore, authentication tags corresponding to different messages
are mutually independent.

8.2.3 Authenticity of the Construction

Before we provide an upper bound on the probability of successful forgery, we
give an informal discussion on how authenticating the plaintext (i.e., aiming for
INT-PTXT) and the true randomness of the encryption algorithm will be used in
the new security proofs. Recall that, in standard MAC algorithms, the security
is modeled by the adversary’s probability of producing a valid authentication
tag for a transmitted message.

When computing the tag as a function of the plaintext in authenticated
ciphers, however, MACs are fundamentally different. The intended receiver in
a authenticated encryption (AE) system will receive a ciphertext-tag pair as

12

opposed to message-tag pair. This implies that the adversary must come up
with a ciphertext-tag pair that will be accepted as valid for the forgery attempt
to succeed. Consequently, MACs in AE systems possess an advantage over
standard MACs as they can benefit from the security of the coupled encryption
algorithm (unless the tag is computed as a function of the ciphertext).

The main idea here is that modifying a single plaintext bit will result in
changing every ciphertext bit with probability 1/2, due to the true randomness
of the ideal cipher. Similarly, modifying a single ciphertext bit will result in
changing every plaintext bit with probability 1/2. To give an illustrative exam-
ple of how the true randomness of the ideal cipher will be utilized to come up
with new security proofs, consider an adversary with the knowledge of a valid
plaintext-ciphertext-tag tuple (M, ¢, 7). Assume the adversary is attempting to
forge a valid tag for a plaintext M’ that is different than M in only a single bit.
In such scenario, even though the adversary can easily predict the correct tag
corresponding to M’ (since the tag is a simple parity check of plaintext blocks),
due to the randomness of the encryption function, the ciphertext corresponding
to M’ should be uncorrelated to the recorded c. Therefore, it is infeasible for
the adversary to predict the correct ¢/, the ciphertext corresponding to M’ with
a non-negligible probability. On the other hand, assume that the adversary is
attempting to authenticate a ciphertext ¢’ that is different than ¢ in a single
bit. Since the encryption is a true random function, the plaintext correspond-
ing to ¢’ should be uncorrelated to the recorded M. Therefore, it is infeasible
for the adversary to predict the correct 7/, the tag corresponding to ¢’ with a
non-negligible probability. What the example shows is that, in scenarios where
the adversary can predict the correct tag, it is infeasible to predict the cor-
rect ciphertext; while in other scenarios in which the adversary can predict the
ciphertext, it is infeasible to predict the correct tag.

In what follows we give a formal security treatment of the theoretical con-
struction. Let f be the true random permutation used for encryption and define
AdvisP (A) = Pr[AS/() forges] to be A’s advantage in breaking the authentic-
ity of the authenticated cipher when given oracle access to the signing algorithm

Sy.

Theorem 1. Let f : {0,1}* — {0,1}* be a true random permutation used as

an encryption algorithm and n be the security parameter. Let A be an adversary

making q signing queries before attempting its forgery. Then, A’s advantage of
ﬁ

successful forgery against the scheme of Section|8.2.1| is at most Advﬂfh(A) <
21-n,

Proof: For the rest of the proof, we will denote by M the concatenation of
the coin tosses, r, and the plaintext message (i.e., r becomes the first n-bit of the
plaintext message). When ¢ = 0 it is rather straightforward. It follows directly
from the fact that each value of the authentication tag is equally probable (see
the proof of Lemma |l)).

Now, assume A has made ¢ signing queries and recorded the sequence

Seq = { (M e1,m), - (Mysq,7y) }, (8.6)

13

where M;, ¢;, 7; are the message, ciphertext, and tag corresponding to the 7"
signing query, respectively. A then calls the verify oracle with (¢, 7), where
(¢,7) # (¢i,7;) forany i = 1,- - -, ¢ since otherwise A does not win by definition.
We aim to bound the probability that (c,7) will be validated. Let M be the
plaintext message corresponding to the decryption of ¢, the ciphertext in the
forgery attempt. There are two possible strategies for forgery:

1. selective forgery: the adversary attempts to forge a valid ciphertext-tag
pair corresponding to a specific plaintext of her choice,

2. existential forgery: the adversary attempts to authenticate a ciphertext-
tag pair regardless of the corresponding plaintext (i.e., modify a recorded
ciphertext-tag pair in a way undetected by the legitimate receiver).

Call the former forgery, and the latter forgery,. Since the adversary either knows
M (forgery,) or does not (forgery,), these two possible scenarios span the entire
attack vector.

To bound the probability of forgery,, let A attempt to falsely authenticate
a message, M, of its choice. Since the tag is simply the summation of message
blocks, predicting the correct tag is trivial. However, since f is a true ran-
dom permutation, the corresponding ciphertext is uniformly distributed over the
range of f. Consequently, the probability of successful forgery, is 271¢ < 277,

To bound the probability of forgery,, denote by Collision the event that
S M) = Y252, Mi[s] (mod 27) for some i € {1,2,-,q}, where ky =
(%1, ky = [MZ—‘], and M;[j] denotes the j* block of the i*" message. That is,
the message corresponding to the ciphertext in the forgery attempt, M, collides
with M;, one of the recorded messages in the sequence of equation . Also,
we use Collision as the typical notation for the complement of Collision.

Obviously, there are two possible scenarios here: either M will collide with
one of the M;’s or it will not. Assume that M collides with M; for an i €
{1,---,q}. Then, (¢,7;) # (¢;, ;) will pass the integrity check. However, since
f is a true random function, the probability of collision is

k1 k2

Pr [couision} —Pr {Z Mlj] = ZMi[j]] =9, (8.7)

j=1 j=1

Assume now that M does not collide with any of the M;’s. If no collision
has occurred, then the adversary’s probability of successful forgery is bounded
by the probability of predicting the plaintext message corresponding to ¢, thus
predicting the correct tag. That is, similar to the probability of forgery,, since
f is a true random permutation,

Pr [forgerye|CoIIision =2 IMl < o7, (8.8)

14

By equations (8.7)) and (8.8]), the probability of forgery, can be bounded by
Pr [forgerye] =Pr [forgerye|CoI|ision} -Pr [Collision]
+Pr [forgerye|cc||ision} -Pr [Collision}

<Pr {Collision] + Pr [forgerye|Co|Iision]
=2""427"

Hence, max { Pr [forgerys},Pr [forgerye}} = 27" is A’s maximum advan-

tage of successful forgery, and the theorem follows. [|

8.2.4 Privacy of the Construction

There are two pieces of information sent to the intended receiver, the tag and
the ciphertext. Since both are functions of the plaintext message, we must
show that neither one of them reveals secret information about the confidential
message. We start by giving information-theoretic analysis of the privacy of the
scheme given the observation of authentication tags.

Theorem 2. Assume that the coin tosses of Sg, the r’s, are shared secrets
(e.g., delivered out of band). Then, no information about plaintext messages
can be exposed by the observation of authentication tags computed according to

equation .

Proof: By Lemmal[l] each tag is independent of its corresponding message.
Therefore, by only observing a single authentication tag, the adversary cannot
expose any information about the encrypted message. Assume now the adver-
sary has observed the sequence Seq = {7,---,7,} of authentication tags. By
Lemma [I] different authentication tags are mutually independent. Therefore,
the observation of multiple tags gives the adversary no extra information than
what a single tag gives individually, and the theorem follows.]

Recall that the coin tosses, the 7’s, are delivered to the intended receiver by
encrypting them with the underlying encryption algorithm. Theorem [2] implies
that, as long as the adversary cannot extract secret information about the r’s
from observed ciphertexts, authentication tags do not reveal any private infor-
mation about encrypted messages. In other words, the only way to attack the
privacy of the composition is by attacking the security of the underlying encryp-
tion algorithm. To complete the analysis of the privacy of the system, it remains
to prove the privacy of the underlying encryption algorithm. Different notions
of privacy can be used to analyze encryption algorithms. Recent authenticated
encryption schemes, however, use the notion of distinguishing the ciphertext
from a random string of equal length to analyze the privacy of their schemes
(see e.g., [16] I1]). For consistency, we will adopt the same notion of ciphertext
randomness to analyze the privacy of our construction. Since the theoretical
construction of this section uses a true random permutation, it is intuitive that

15

M[1] MIK]

,
N ctr N ctr N ctr
Key I Block Cipher Key I Block Cipher Key I Block Cipher

Encryption Encryption Encryption
c[0] c[1] clk]

Figure 8.1: Tllustration of a counter-based parallelizable mode of encryption. N
is a nonce, ctr is a counter that increments each block, r is the coin tosses of
the signing algorithm, M|[i] is the i*" plaintext block of a message consisting
of k blocks, and c[i] is the i ciphertext block. Note that the effective key
corresponding to each block is different than all other blocks of the same message
and all different messages (due to the use of the nonce and the counter). This
is critical for the security of the construction.

the randomness of ciphertexts (thus privacy) is preserved. However, since anal-
ysis of practical systems will be dependent on the used block cipher and mode
of encryption, we defer the proof of privacy to Section [8:3] where we give an
example of a practical construction of encryption algorithms that can be secure
using the proposed method.

8.3 PCMAC: From Theory to Practice

In his 1949 foundational work [19], Shannon introduced the notions of confusion
and diffusion as required properties for secure encryption algorithms. Confusion
refers to the property that correlating the ciphertext and the key is infeasible
for unauthorized observers, while diffusion refers to the property that corre-
lating the ciphertext and the plaintext is infeasible for unauthorized observers.
Confusion and diffusion have become basic requirements of secure blockciphers.
The combination of the confusion and diffusion lead to what is known as the
avalanche effect: changing a single plaintext bit or a single key bit results in
changing half the ciphertext bits, on average (otherwise stated, each ciphertext
bit will change with probability 1/2). Indeed, modern blockciphers have a very
good avalanche effect [20].

Obviously, no simple parity check can be a secure MAC in the standard
settings. The novelty of this work, however, is to utilize the avalanche effect of
modern blockciphers and the special structure of AE systems when only INT-
PTXT is sought to come up with such a secure parity check MAC.

Figure depicts a parallelizable mode of encryption that can be used
alongside the proposed PCMAC to construct a secure authenticated cipher.
The mode of encryption of Figure [8.1] utilizes the use of a nonce and a counter.
The concatenation of the nonce and the counter is of length equal to that of

16

the blockcipher key. The same nonce cannot be used twice for two encryption
operation unless a new key for the blockcipher has been randomly selected. The
maximum length of plaintext messages that can be encrypted using the scheme
of Figure is exponential in the length of the counter (2!l times the block
size to be exact). Since typical key lengths are sufficiently long (e.g., 128, 192,
or 256 in AES), deciding these two parameters is not a challenging issue. For
example, choosing |N| = 88 and |ctr| = 40 when the key length is 128, as can be
found in [11], implies that the maximum message length is about 18 Terabyte
and the maximum number of messages is 3 x 10?5, As in the standard counter
mode, both the nonce, N, and the ciphertext, ¢, are required for decryption.

8.3.1 PCMAC Description

Let M be the plaintext message to be authenticated and n be a security pa-
rameter agreed upon by legitimate users. (For ease of notation, we will assume
that n is equal to the size of the blockcipher used to construct the encryption
algorithm; we emphasize, however, that n can be different.) Append a unique
End-of-Message character to the end of M and divide M into k := f%l blocks,
each of length n-bits, except possibly the k' block. Append the k*" block of M

with ¢ zeros, where £ = n — (|M| (mod n)), so that it becomes an n-bit long

string. Let o be the n-bit compressed image of M, evaluated as follows.
k
o= Ml[i] (mod2"), (8.9)
i=1

where M][i] denotes the i*" block of the message M. Given a plaintext message
M, compute its compressed image according to equation . Generate a string
r, drawn uniformly at random from {0,1}", and prepend it to the message M.
(As will be demonstrated in the security proof and performance discussion, r
will be used in a novel way not only to provide the required randomness, but
also to eliminate a blockcipher call that is essential for the security of existing
schemes.) Using the underlying encryption algorithm &, encrypt r||M to get
the corresponding ciphertext; i.e.,

c=E(N,r||M), (8.10)
where N is a nonce. The authentication tag of M is simply
T=0+r (mod2"). (8.11)

The tuple (N, ¢, 7) from equations (8.10) and (8.11)) is then transmitted to

the intended receiver. Note that, if |[M| > n - 21T the message is treated as
multiple messages of lengths less than n - 2/t

Given (N,c), the intended receiver decrypts the ciphertext to obtain the
plaintext message, M, and the coin tosses, r. The receiver then breaks M
into its n-bit blocks (the M[i]’s), computes the modular summation), M[i] +

17

r (mod 2™), and authenticates the message if and only if the summation is
congruent to the received tag 7. Formally, the following integrity check must be
satisfied to validate the message

=Y M[i]+r (mod2"). (8.12)

8.3.2 PCMAC Security

To start, we emphasize that we assume that the used blockcipher is secure
against related-key attacks. Related-key attacks are attacks that can be launched
against blockciphers using the knowledge of some mathematical relation between
different blockcipher keys. Such attacks, while theoretically significant in reduc-
ing the security of certain blockciphers, require significant resources that make
their impact on the security of practical systems very minor [I4]. For instance,
the most effective related-key attack on AES-256 requires 2'!? data and time
complexity [3]. While such a reduction, from 2256 for exhaustive search to 219
for related-key, is theoretically significant, it could take up to 500 million years
to perform such an attack [14]. Note further that the security against related-
key attacks is highly dependent on the blockcipher. For instance, there is no
related-key security implications against AES-128 [14].

Let Advgrgéka(.A) denote adversary’s A advantage of breaking the pseudo-
randomness of the blockcipher when launching related key attacks. We say
the blockcipher is prp-rka secure if A’s advantage in breaking the prp of the
blockcipher using related keys is negligible. Note that prp-security implies that
changing one plaintext bit will make every ciphertext bit change with proba-
bility 1/2 (the avalanche effect), and vice versa. The added security against
related-key attacks implies that changing one bit of the key will make every
ciphertext bit change with probability 1/2. The previous two assumptions are
Shannon’s diffusion and confusion properties which are valid assumptions in
modern blockciphers [20]. Define Advistiiac(A) = Pr[AS(+) forges] to be A’s
advantage in breaking the authenticity of PCMAC when given oracle access to
the signing algorithm Sg, where £ is the encryption algorithm of Figure [8.1
One gets the following.

Theorem 3. Fix a blockcipher BC : K x {0,1}" — {0,1}" that is used to
construct the mode of encryption of Figure [8.1 Let A be a nonce-respecting
adversary that asks q signing queries totaling at most A bits of payload before
attempting its forgery. Then, there is an adversary B attacking the prp-rka-
security of the blockcipher in which

AdVEENAG(A) < AdVERES(B) + 2! 7", (8.13)

Furthermore, adversary B takes the same time adversary A takes, minus the
time of generating the coin tosses and the generation and authentication of tags,
and makes at most 2[\/n]| + ¢+ 1 oracle queries.

18

Proof:
Assume A has made ¢ signing queries and recorded the sequence

Seq = {(vaMlvclle)a e 7(NQvMQaC%Tq)}7 (814)

where N;, M;, c;, 7; are the nonce, message, ciphertext, and tag corresponding to
the i*" signing query, respectively. A then calls the verify oracle with (N, ¢, 7),
where (N,e,7) # (N, ci,7;) for any ¢ = 1,---, ¢ since otherwise A does not
win by definition. We aim to bound the probability that (N, ¢, 7) will be val-
idated. Let M be the plaintext message corresponding to the decryption of c,
the ciphertext in the forgery attempt.

The coin tosses, r, plays a pivotal role in this proof. Denote by ¢;[1] the first
block of ciphertext ¢;. First, observe that, for a nonce-respecting adversary, the
use of the counter prevents the concatenation of the nonce-counter of the first
block of the mode of encryption of Figure[8:I]to be the same as the concatenation
of a nonce-counter of any other block in any signing query. Therefore, if ¢[1],
the first ciphertext block of the attempted forgery, is not equal to any of the
¢i[1]’s, given the prp security of the blockcipher, the resulting coin toss r (the
decryption of ¢[1]) will be a random element of Za». Consequently, by Lemma
(2] the resulting tag is uniformly distributed over Zy» and, hence, the adversary’s
advantage of successful forgery is 27".

Now, assume that c[1] is equal to ¢;[1] for an ¢ € {1,---,¢}. There are two
possible scenarios here: either N = N; or N # N;. Let N # N,;. Then, by
the prp-security of the blockcipher, r is uniformly distributed over Zon, where r
represents the coin tosses of the attempted forgery (i.e., the decryption of ¢[1]).
Therefore, similar to the case in which ¢[1] # ¢[1] for any ¢ € {1,--- , ¢}, the
adversary’s advantage when c[1] = ¢;[1] for some ¢ € {1,---,¢} but N # N; is
27",

Assume now that c[1] is equal to ¢;[1] for an i € {1,--- ,¢q} and let N = N;.
Then, r = r;, where r represents the coin tosses of the attempted forgery and
r; represents the coin tosses of the i*! signing query. If ¢ = ¢; only (N,c,7) =
(N, ¢, 1;) will be a validated and the adversary does not win by definition. It
remains now to derive a bound on the probability of successful forgery when
(c[1],N) = (¢;[1], N;) for some i € {1,--- ,q} but ¢ # ¢;. We consider below the
two possible scenarios: |c| = |¢;| and |c| # |¢;].

Let ¢ # ¢; but |¢|] = |¢;|. Then, there must exist at least one ciphertext
block ¢[d] in which ¢[d] # ¢;[d]. For a prp blockcipher, M[d] cannot be corre-
lated to ¢[d]. Furthermore, for a nonce-respecting adversary, M[d] cannot be
correlated to any of the plaintext blocks recorded in the sequence of equation
. Therefore, the same proof of Theorem |l| can be used to show that prob-
ability of selective forgery forgery, < 27" and probability of existential forgery
forgery, < 2'~". The only difference here is that, since we are not dealing with
a true random permutation, one will need access to a BC oracle in order to
verify a selective forgery attempt, which translates into needing the pseudoran-
dom permutation assumption (prp), and access to a BC! oracle in order to
verify an existential forgery attempt, which translates into needing the strong

19

pseudorandom permutation assumption (sprp).

Finally, let ¢ # ¢; and |¢| # |¢;|. Due to the unique end-of-message (EOM)
character, if ¢ is a truncation of any observed ciphertext then the decrypted mes-
sage will not be valid one. Furthermore, for a nonce-respecting adversary, due to
the uniqueness of the EOM character, any padding or removal of intermediate
bits will make the decryption of the last ciphertext block a random element of

Zon. Therefore, as in the case of |c| = |¢;|, the probability of selective forgery
forgery, < 27" and probability of existential forgery forgery, < 27", and the
theorem follows. [

It remains now to prove the privacy of the system. The proof that authenti-
cation tags do not reveal any information about their corresponding ciphertexts
is the same as in Section To complete the analysis, we prove in what
follows the privacy of the encryption algorithm. As mentioned earlier, there are
different notions of privacy. Here, to be consistent with related schemes, such as
OCB [16] and CWC [I1], we choose to follow the strong notion of distinguishing
a ciphertext from a random string of equal 1engthE|

Consider an adversary A who has one of two types of oracles: a real en-
cryption oracle and a fake encryption oracle. The real encryption oracle Ex (-, -)
takes as input a pair (N, M) and returns a ciphertext ¢ < Ex (N, M). Assume
that the length of the ciphertext depends only on the length of the plaintext,
that is, |¢| = I(]M]|). The fake encryption oracle, $(-,-), takes as input a pair

(N, M) and returns a random string c & {0, 1}4IMD),

the encryption scheme £, define

Given adversary A and

AdVEY (A) = Pr [K &K AT = 1} _Pr [A$("') - 1}

to be A’s advantage of breaking the privacy of the encryption algorithm. One
gets the following.

Theorem 4. Let & be the encryption algorithm of Figure[8-1] and let BC be the
blockcipher used to construct £. Then given a nonce-respecting adversary, A,
against £, one can construct an adversary B against BC such that

AdvE™ (A) < AdvERE(B).

Furthermore, the experiment for B takes the same time as the experiment for
A and, if A makes at most q. oracle queries totaling at most u bits of payload
data, then B makes at most [u/n] + ge oracle queries.

Theorem 4] states that, if the blockcipher used to construct the encryp-
tion algorithm of Figure [8.1]is a secure pseudorandom permutation against re-
lated key attacks, then the resulting encryption algorithm provides data privacy.

L Another standard privacy notion, used in [2] [10], is indistinguishability under chosen
plaintext attacks (IND-CPA) [7], which captures the adversary’s inability to distinguish the
ciphertext corresponding to a pair of equal-length adversary-selected plaintexts. However, the
notion of distinguishing the ciphertext from a random string of equal length implies IND-CPA
while the converse is not true in general [16].

20

Proof: [Theorem Let B be an adversary against BC that uses adversary A and

that has oracle access to a function f & B Adversary B runs A and replies
to A’s encryption oracle queries using its own oracle f(-,-) for the blockcipher
used in the mode of encryption depicted in Figure Adversary B returns the
same bit that A returns. Then,

Pr [K Sk ABKG) = 1} —Pr [K &K BBCRr00) = 1}7

since when B is given a random instance of BC it runs A exactly as if A was
given the real encryption oracle. Furthermore,

Pr [A$("') - 1] =Pr [K & Kym & Perm(K, D) : Brrxc00) = 1]

since B replies to all of A’s oracle queries with independently selected random
strings. Consequently,

AdvE™ (A) = Pr [K S g A8 = 1} _Pr {Aw-,-) _ 1]
— Pr [K 8 K. BBCric0 () — 1}
—Pr [K <i K;m <i Perm(KC, D) : Brrrex0() = 1}
= AdVERE4(B),

and the theorem follows. []

21

Chapter 9

RMAC

9.1 Notations and Preliminaries

In this section we describe the notations and preliminaries that will be used in
the chapter.

9.1.1 Notations

- For a positive integer «, {0,1}* denotes the set of all a-bit sequences,
whereas {0,1}* denotes the set of all arbitrary length bit sequences.

- We use F, as the usual notation for the prime field where operations are
performed modulo the prime integer p.

- For a nonempty set S, the notation s & S denotes the operation of se-
lecting an element from the set S uniformly at random and assigning it
to s.

9.1.2 Negligible Functions

An important term that will be used in this paper is the definition of negli-
gible functions. A function negl : N — R is said to be negligible if for any
nonzero polynomial poly, there exists Ny such that for all N > Ny, |negl(N)| <
. That is, the function is said to be negligible if it converges to zero

[poly(IV)|
faster than the reciprocal of any polynomial function [6].

9.1.3 Message Authentication Codes

A message authentication code MAC = (K, S, V) is a symmetric-key primitive
consisting of three algorithms: the key generation algorithm (K), the signing
algorithm (§), and the verifying algorithm (V). MAC is defined over some key
space KeySp and some message space MsgSp = {0,1}*. The randomized key

22

generation algorithm K returns a key k € KeySp. The possibly probabilistic
signing algorithm S takes as input a key k& € KeySp and a payload message m €
MsgSp, and returns an authentication tag (authentication tag and MAC will be
used synonymously in throughout this paper) 7 € {0,1}*. The deterministic
verifying algorithm V takes as input a key k € KeySp, a message m € MsgSp,
and a tag 7 € {0,1}*, and outputs a decision d € {0,1}, where ‘0’ stands for
invalid message and ‘1’ stands for valid message. We ask for the basic validity
requirement that if 7 = S(k,m) then it must be the case that V(k,m,7) = 1
for any k,m, and 7.

9.1.4 Adversarial Model

We adopt the standard model of existential unforgeability under chosen message
attacks (EUF-CMA). The adversary is given oracle access to the signing algo-
rithm S(-,m). The adversary can call the S oracle on plaintext messages of her
choice and observe the outputs. After calling the S oracle for ¢ times, the ad-
versary attempts a forgery by calling the verifying algorithm V(-,m, 7) for a tag
that has not been attached to the message by the signing oracle. Note that the
adversary does not see the secret key k nor the coin tosses of S, if any. If the
verified decryption oracle returns 0, the adversary is considered unsuccessful;
otherwise, the forgery attempt is said to be successful.

Game 1 (EUF-CMA game).

1. The challenger draws a key k gk uniformly at random.

2. A calls the signing oracle a polynomial number of times on messages of
its choice and records the corresponding tags.

3. A then calls the verifying oracle on a message-tag pair (m,T) of its choice.

4. A wins the game if V(k,m,7) =1 and 7 has never been attached to m by
the signing oracle.

Let Adviii2*(A) denotes adversary’s A advantage of successful forgery
against the message authentication code MAC. Then, MAC is said to be
existentially unforgeable under chosen message attack if

AdVUEE (A) < negl([k]),

where negl(]k|) is a negligible function in the security parameter.

Since in computationally secure MACs based on universal hash functions the
hashed image must be processed with a cryptographic function, another security
notion that will be used in this paper is the privacy notion of indistinguishabil-
ity under chosen plaintext attacks (IND-CPA). Let A be an adversary who is
given oracle access to an encryption algorithm £ and can ask the oracle to en-
crypt a polynomial number of messages to get their corresponding ciphertexts.
The encryption algorithm is said to be IND-CPA secure if the adversary, after

23

calling the signed encryption oracle a polynomial number of times, is given a
ciphertext corresponding to one of two plaintext messages of her choice cannot
determine the plaintext corresponding to the given ciphertext with an advantage
significantly higher than 1/2.

9.2 The Residue Message Authentication Code
(RMAC)

9.2.1 The Basic Idea

The main idea of the proposed scheme is to compute authentication tags over a
secret prime field. Therefore, unlike standard universal hashing MACs, security
is not only obtained from the secrecy of the key, but also from the secrecy of the
prime field under which the tag is computed. Since the use of a cryptographic
function to process the hashed image is mandatory in universal hashing MACs to
preserve the secrecy of the key, ensuring the secrecy of the prime field comes for
free; that is, no extra overhead is needed to guarantee the secrecy of the prime
field. The added layer of uncertainty allows the design of a MAC in which only
the residue of the message is multiplied by the secret hashing key. To the best
of our knowledge, RMAC is the first authentication mechanism in the literature
that does not require every single block of the message to be multiplied by a
secret key (as in the case of standard universal hashing) or processed with a
cryptographic primitive (as in the case of block cipher and cryptographic hash
function based MACs). Note that this has nothing to do with “security through
obscurity;” all we do is assume the prime modulus is part of the secret key.

Before we describe the details of the proposed scheme, we give a brief back-
ground showing that there is a sufficient number of primes to grant security.
That is, correctly guessing a prime chosen randomly from the set of equal length
(in bits) primes is a negligible function in the bit-length of the prime.

9.2.2 The Prime Number Theorem

Let n be an integer. The prime counting function 7(n) counts the number of
primes less than n. Gauss first proposed that the prime counting function can
be approximated by

n
N — 9.1
w(n) 91)

and then later refined it to
7(n) =~ Li(n), (9.2)

1
where Li(n) = [’ oz dz is the logarithmic integral [9]. The relation in equation
nx

(19.2) is known as the prime number theorem; the theorem was independently
proven by Hadamard [8] and Poussin [I3].

24

The approximations in equations (9.1) and (9.2) were quite accurate. In
fact, for a large n, Chebyshev showed that [4]

0.89 Li(n) <

1.11 Li(n).
n/lnn < i(n)

Chebyshev also showed that

(n)

0.922 < < 1.105

n/lnn

and proved that if the limit, lim m(n)
n—oo n/lnn

one [9]. Rosser and Schoenfeld showed that, for all n > 17, n(n) > IL [1.
nn

As a direct consequence of the above results, for a large enough positive
integer k, the number of k-bit primes can be approximated by

, does exist, then it must be equal to

oK 2;@—1 oK

— ~ . 9.3
kln2 (k—1)In2 kln4 9:3)

Equation (9.3)) implies that the number of k-bit primes is an exponentially
increasing function of k. The following corollary is a direct consequence of the
above discussion.

Corollary 1. If P, is the set of all k-bit prime integers, the probability of
guessing a prime number drawn uniformly at random from Py is a negligible
function in k.

9.2.3 Detailed Description

Let x be the security parameter of message authentication. Formally, RMAC
consists of three algorithms: the key generation algorithm /C, the signing algo-
rithm S, and the verifying algorithm V. The key generation algorithm takes no
input and returns a pair (p, k), where p determines the prime filed under which
the MAC is computed and k is the authentication key. The prime p is drawn
uniformly at random from P, the set of all k-bit primes, while the authentica-
tion key is drawn uniformly at random from the the set F,\{0,-- -, [p/2]}; that
is, k must be greater than p/2. Throughout the rest of the paper, we overload
notations such as m, k, 7 to denote both the binary strings of their respective
parameters and their integer representation in a big-endian format; the distinc-
tion between the two representations will be omitted as long as it is clear from
the context.

On input an arbitrarily long message m, the signing algorithm appends ‘1’
as the most significant bits of the message, map, = 1||m, reduces mapp to its
residue modulo p,

Myres = Mapp (mod D), (9.4)

25

Algorithm I Algorithm S(K,m) Algorithm V(K, m, 1)
piP,.i Mapp < 1||m 7' S(K,m)
kEFNO, - [p/2)} Mires < Mapp (mod p) if (7' £ 7)
return K = (p, k) T E(k “Myes (mod p)) return 0

return 7 return 1

Figure 9.1: The three algorithms constituting the proposed RMAC: the key
generating algorithm /C, the signing algorithm S, and the verifying algorithm
V. The algorithm & used to encrypt the hashed image can be any IND-CPA
secure stream cipher.

and then computes the authentication tag as
T= E(k “Myres (mod p)), (9.5)

where £ is an IND-CPA secure stream cipher. EI

Note that appending the message with a ‘1’ as the most significant bit serves
an important purpose: it guarantees that distinct binary messages correspond
to distinct integers (since padding the most significant part of the message with
zeros will force its integer value to change). Note also that because k > p/2,
modular reduction in equation will be enforced for all m,qs # {0, 1}, which
will only happen with negligible probability. The three algorithms constituting
RMAC are shown in Figure

9.3 Security Statement

In this section, we give a formal security analysis of the proposed RMAC. Com-
pared to existing MACs, in which security proofs typically span multiple pages,
the simplicity of the proposed RMAC will be reflected on the simplicity of its
security proof.

We prove here the authenticity of the scheme assuming the encryption al-
gorithm in equation is a stream cipher (or a block cipher operated in a
stream mode, such as the counter mode). Other encryption algorithms might
be used but the analysis will be different, thus omitted here.

Let RMAC-E denote the proposed MAC of Section 0.2 using £ as the under-
lying encryption algorithm. Let Adviiiae?e (A) denote adversary’s A advantage
of successful forgery against RMAC-E£. We give below an information-theoretic
bound on the adversary’s advantage of successful forgery assuming the plain-
text is encrypted by XORing it with a true random binary sequence; i.e., the

1For the sake of AVALANCHEv1, 7p will be used as the key stream. That is, the final
authentication tag of AVALANCHEv1 will be 7p @ (k - mres (mod p)).

26

encryption is a one-time pad (OTP) cipher. The generalization of Theorem
to any IND-CPA secure stream cipher is a standard complexity reduction and
is informally discussed after the theorem’s statement and proof.

Theorem 5. Let k be the bit length of the prime modulus used to compute
authentication tags according to equations and . Let RMAC-OTP
denote the proposed MAC of Section[9.9 with an information-theoretically secure
OTP cipher as the underlying encryption algorithm. Let A be an adversary
making q signing queries before attempting its forgery. Then,

Adviniaeore (A) < negl(x).

It is standard to pass a complexity-theoretic analog of Theorem [5] One gets
the following. Let £ be an IND-CPA secure encryption algorithm that XORs
plaintexts with a pseudorandom bit stream (e.g., a stream cipher or a block
cipher based encryption using the counter (CTR) mode of operation). Given
adversary A against the RMAC-£, one can construct an adversary B against &£
so that ‘

Adviisea . (A) < AdvETP*(B) + negl(x). (9.6)

Equation states that the adversary’s advantage of successful forgery is
provably secure provided the underlying stream encryption is IND-CPA secure.
Proof: [of Theorem [5] Since the plaintext must be appended with ‘1’ before au-
thentication, we eliminate the trivial case of a known zero tag when the plaintext
message consists of all zeros. In addition, attempting forgery by appending ze-
ros as the most significant bits of the plaintext will not trivially succeed since
the appended ‘1’ will force the integer value of the plaintext to change. Fur-
thermore, since k > p/2, the probability of choosing a message m such that
k - myes < p is negligible for secret p. For the reminder of the proof, for ease
of notation, we will drop the subscript from m,p, and use m to denote the
plaintext after appending ‘1’ as its most significant bit.

Assume there is an adversary calling the signing oracle for ¢ times and
recording the sequence

Seq:{(mla'rl)a"' a(mquq)} (97)

of message-tag pairs. We aim to bound the probability that a pair (m,7) of
the adversary’s choice will be accepted as valid, where (m, 1) # (m;, ;) for any
i€ {l,---,q}, since otherwise the adversary does not win by definition.

Let m = m; + €, for any i € {1,--- , ¢}, where ¢, can be any value of the
adversary’s choice. Let Collision denote the event that km = km; (mod p) and
let Collision denote its complement. Then,

Pr [Collision| = Pr [km = km; (mod p)] (9.8)
=Pr ke, =0 (mod p)]. (9.9)

27

If the prime modulus p is known, the adversary can set €, to be any integer
multiple of p for a collision. However, due to the perfect secrecy of the OTP
encryption, no information about p can be obtained by observing the authenti-
cation tags. Furthermore, p is chosen randomly from the set of x-bit primes and,
by Corollary [I] guessing the correct value of p is negligible in k. Consequently,

Pr [Collision] < negl(k). (9.10)

If no collision occurs, it remains to prove that an adversary cannot construct
a pair (m,7) such that m = m; + €, and 7 has been changed appropriately
to account for ke, (mod p) by flipping the corresponding bits of 7;. To be
able to do that, the adversary must predict the correct value of the secret key.
Therefore,

Pr [Forgery|Collision] < 27("=2) — negl(k). (9.11)
Therefore, the probability of successful forgery can be bounded by

Pr [Forgery] =Pr [Forgery|Co|Iision] -Pr [Collision]

+ Pr [Forgery|Collision| - Pr [Collision]
<Pr [Collision] + Pr [Forgery|Co|Iision
= negl(r),
and the theorem follows. []

Remark 2. To see how equation follows from Theorem@ observe that
in the proof of Theorem [J the only use of the information-theoretic security
of the underlying OTP encryption algorithm is to imply that no information
about the authentication key k nor the prime modulus p can be exposed by the
authentication tags. Therefore, the difference between using an information-
theoretically secure OTP encryption and an IND-CPA secure stream cipher is
that the adversary in the latter case has a negligible advantage of exposing the
value of k or p by breaking the IND-CPA security of encryption. The rest is
just a standard complexity reduction.

Remark 3. An alternative approach to prove Theorem[J] is by adopting to the
definition of e-almost XOR universal hash families introduced in [12, Z5/E| A
function H is said to be e-almost XOR universal, denoted e-AXU, if for all
distinct m,m’ € MsgSp, and any a € R, where R is the range of the hash
function, we have that PrhﬁH[h(m) @ h(m') = a] < e. The proof of Theorem
[shows that when both the prime modulus p and the secret key k in RMAC
are kept secret, then h(m) = km (mod p) is negl(x)-AXU hash family (indeed,
the size of the set of all possible messages that are different by multiples of p is
negligible compared to the size of the set of all possible messages). This is all
that is needed to prove the security of the MAC since, in [12], it has been shown
that encrypting the output of an e-AXU hash function with a one-time pad will
result in a secure MAC.

2Krawczyk first introduced the definition but with the name e-otp-secure hash families [12l;
it was Rogaway, however, who gave it the more common name of e-almost XOR universal [15].

28

Bibliography

1]

M. Bellare and T. Kohno. A theoretical treatment of related-key at-
tacks: Rka-prps, rka-prfs, and applications. Advances in Cryptology—
EUROCRYPT’03, pages 647647, 2003.

M. Bellare and C. Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. Jour-
nal of Cryptology, 21(4):469-491, 2008.

A. Biryukov and D. Khovratovich. Related-key cryptanalysis of the full
aes-192 and aes-256. In Advances in Cryptology—-ASIACRYPT’09, pages
1-18. Springer, 2009.

H. Edwards. Riemann’s zeta function. Dover Pubns, 2001.

W. Feller. An introduction to probability theory and its applications, vol-
ume 2. John Wiley & Sons, 2008.

O. Goldreich. Foundations of Cryptography. Cambridge University Press,
2001.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270-299, 1984.

J. Hadamard. Sur la distribution des zéros de la fonction ¢ (s) et ses
conséquences arithmétiques. Bull. Soc. Math. France, 24:199-220, 1896.

J. Havil. Gamma: exploring Fuler’s constant. Princeton University Press,
2003.

C. Jutla. Encryption modes with almost free message integrity. Advances
in Cryptology-EUROCRYPT’01, pages 529-544, 2001.

T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance con-
ventional authenticated encryption mode. In Fast Software Encryption —
FSE’04, volume 3017, pages 408-426. Lecture Notes in Computer Science,
Springer, 2004.

29

[12]

H. Krawczyk. LFSR-based hashing and authentication. In Advances in
Cryptology — CRYPTO’9/, volume 839, pages 129-139. Lecture Notes in
Computer Science, Springer, 1994.

C. Poussin. Recherches analytiques sur la théorie des nombres premiers.
Hayez, 1897.

B. Preneel. New Developments in Cryptography. Available at http://
secappdev.org/, 2012.

P. Rogaway. Bucket hashing and its application to fast message authenti-
cation. Journal of Cryptology, 12(2):91-115, 1999.

P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher
mode of operation for efficient authenticated encryption. In ACM Confer-
ence on Computer and Communications Security — CCS’01, pages 196205,
2001.

J. Rosser and L. Schoenfeld. Approximate formulas for some functions of
prime numbers. Illinois Journal of Mathematics, 6(1):64-94, 1962.

S. Schwarz. The role of semigroups in the elementary theory of numbers.
Math. Slovaca, 31(4):369-395, 1981.

C. Shannon. Communication Theory and Secrecy Systems. Bell Telephone
Laboratories, 1949.

W. Stallings. Cryptography and Network Security: Principles and Practice.
Prentice-Hall, 2013.

30

http://secappdev.org/
http://secappdev.org/

Appendix A

Proof of Lemma [1

The following lemma, a general result known in probability and group theory
[18], will be used in the proof of Lemmal]

Lemma 2. Let G be a finite group and X a uniformly distributed random
variable defined on G, and let k € G. Let Y = kx X, where x denotes the group
operation. Then'Y is uniformly distributed on G.

Proof: [Lemma [1] Recall that the coin tosses, r, is uniformly distributed
over the set of all possible n-bit binary strings, {0,1}™. Then, for any possible
value of 7 computed according to equation , and any possible plaintext
message M, the following holds:

Pr [T:T|M:M] = Pr [r: (T_Zk:Mm)} — 9, (A1)

i=1

where M[i] denotes the i*" block of the plaintext message M, and 7, M, and
r, denote the random variables representing the values of 7, M, and r selected
according to their respective distributions.

Furthermore, for an r drawn uniformly at random from {0,1}", by Lemma
the resulting tag is uniformly distributed over {0,1}". That is, for any fixed
value 7 € Zgon, the probability that the tag will take this specific value is given
by:

Pr {‘r = T:| =2"" (A.2)
Combining Bayes’ theorem [5] with equations (A.1]) and (A.2)) yields
Pr [MZM‘TZT} —Pr [M:M} (A.3)

for any plaintext M and any authentication tag 7. That is, authentication tags
are statistically independent of their corresponding plaintext messages. In other

31

words, the observation of an authentication tag gives no information about its
corresponding plaintext message, as required.

To show that different authentication tags are mutually independent, let
M, through Mj denote the random variables representing the experiments of
drawing messages M; through M, according to any arbitrary probabilistic dis-
tribution. Similarly, let 7y through 7¢ denote the random variables representing
the authentication tags corresponding to messages M; through My, respectively.
Further, let r; through 7y be the random variables representing the coin tosses
of the signing algorithm S¢ for the authentication of messages M; through My,
respectively. Recall that the r;’s are mutually independent and identically dis-
tributed (iid) uniform random variables drawn from {0,1}". Then, for any
possible values of the messages M7 through M, with arbitrary joint probability
mass function, and all possible values of 7 through 7,, we get:

Pr[71:71,~~~,7'g:7'g]

:Z Pr |:Tl =T1, " 7Tl:T€|M1 :M17“' aMl:M£:|
My, M,

Pr [Mlel,-.. ,MZ:MZ} (A.4)
S e[= (-) re = (- >0 000)]
My, M, i=1 i=1

.Pr [Mlel,-.- ,Mg:Mg} (A.5)
=3 P [= (n - S 00)] e e = (- 30 000
My, , M, i=1 i=1

- Pr [M1:M1,~~- ,MZ:MZ} (A.6)
-3 2_"-~-2_"-Pr{M1:M1,--~,Mg:Mg] (A7)
it
=Pr |:T1 = 7'1} - Pr [Tg = 7'4, (A.8)

where M;[i] denotes the i*" block of the j*" message M;. Equation (A.6) holds
due to the mutual independence of the r;’s; equation holds due to the
uniform distribution of the r;’s; and equation holds due to the uniform
distribution of the 7;’s. Therefore, authentication tags are mutually indepen-
dent, and the lemma follows. []

32

	Specification
	Parameters
	Recommended parameter sets
	Authenticated encryption

	Security Goals
	Security Analysis
	Features
	Design Rationale
	Intellectual Property
	Consent
	PCMAC
	Notations and Preliminaries
	PCMAC: Theoretical Construction
	PCMAC: From Theory to Practice

	RMAC
	Notations and Preliminaries
	The Residue Message Authentication Code (RMAC)
	Security Statement

	Proof of Lemma 1

