
Joltik v1

Designers/Submitters:

Jérémy Jean, Ivica Nikolić, Thomas Peyrin

Division of Mathematical Sciences,
School of Physical and Mathematical Science,
Nanyang Technological University, Singapore.

{JJean,INikolic,Thomas.Peyrin}@ntu.edu.sg

March 16, 2014

Chapter 1

Introduction

In this note, we propose Joltik, a new authenticated encryption design based on a 64-bit lightweight
tweakable block cipher Joltik-BC that uses an AES-like round function as a building block. We
suggest several sets of parameters that can use different key and tweak sizes, and claim security
levels for all the parameters in later sections. Our design uses a particular instantiation of a more
general framework (so-called TWEAKEY [20]) allowing designers to unify the vision of key and tweak
inputs of a cipher. We plug this cipher into two different authenticated encryption modes inspired
from fully parallel and provably secure modes OCB [24] and COPA [1] respectively.

In short, Joltik is a lightweight authenticated encryption scheme oriented especially for
hardware applications. It can be implemented with low area footprint (Joltik-BC is a lightweight
cipher and some extra area is required for the memory in the authenticated encryption mode).
It performs very well for small messages (only m + 1 calls to Joltik-BC are required for a m
block message and without any precomputation), in contrary to sponge or stream cipher based
lightweight designs that require a strong initialization stage. Such a feature is very important
as many constrained environments will only cipher very short messages (for example a 96-bit
Electronic Product Code). In some versions of Joltik, the key can be hard-wired for even smaller
implementations when the application permits. The overhead for decryption capability is minimal,
as we use a novel very lightweight MDS diffusion matrix which is involutory. Joltik provides a
64-bit security for both privacy and authenticity, similarly to AES-GCM [28] or OCB [24] which only
ensure a birthday bound security on 128 bits. Even being hardware-oriented, Joltik will perform
rather well on software platforms, using recent bitsliced implementations of AES-like lightweight
ciphers [2, 27].

Organization of the document. In Chapter 2, we provide the specification of our proposal
Joltik, and the sets of parameters for this proposal. In Chapter 3, we precise the security claims
for different scenarios for the various parameters, and in Chapter 4 we provide a security analysis
of the proposal. In Chapters 5 and 6, we detail the design decisions, and in Chapter 7 we estimate
the hardware performances of the various versions of Joltik. We finish with Chapters 8 and 9
where we give notes on intellectual property and consent.

1

Chapter 2

Specification

In this chapter, we present a full specification of our proposal Joltik. We first give the recommended
parameter sets and then proceed with the description of the design. We explain the two authenticated
encryption modes Joltik6= and Joltik=, and then we describe the lightweight ad-hoc tweakable
block cipher Joltik-BC (which is based on the TWEAKEY framework [20]) used to instantiate the
modes.

We first introduce some notations. We denote EK(T, P) the ciphering of the n-bit plaintext
P with the tweakable block cipher Joltik-BC with k-bit key K and t-bit tweak T (similarly, D
represents the deciphering process). The concatenation operation is represented by || and pad10∗ is
the function that applies the 10* padding on n bits, i.e. pad10∗(X) = X||1||0n−|X|−1 when |X| < n.
In contrary, unpad10∗ is the function that removes the 10* padding on n bits, i.e. unpad10∗(X)
removes all the consecutive 0 bits in X starting from the right (possibly none, possibly all). The
truncation of the word X to the first i bits is given by trunci(X). Finally, ε will represent the
empty string.

Our authenticated encryption scheme Joltik is composed of an encryption part and a ver-
ification/decryption part. The encryption part E takes as input a variable-length plaintext M
(with m = |M |), a variable-length associated data A (with a = |A|), a fixed-length public message
number N and a k-bit key K (we deliberately used the same letter K to represent the key in the
authenticated encryption scheme and the one in the tweakable block cipher, since they always refer
to the same object). It outputs a m-bit ciphertext C and a τ -bit tag tag (with τ ∈ [0, . . . , n]),
i.e. (C, tag) = EK(N,A,M). The verification/decryption part D takes as input a variable-length
ciphertext C (with m = |C|), a τ -bit tag tag (with τ ∈ [0, . . . , n]), a variable-length associated data
A (with a = |A|), a fixed-length public message number N and a k-bit key K. It outputs either
an error string ⊥ to signify that the verification failed, or a m-bit string M = DK(N,A,C, tag)
when the tag is valid. The maximum message length (in n-bit blocks) is denoted maxl and the
maximum number of messages that can be handled with the same key is denoted maxm. We have
that maxl = 2dt/2e−3 and maxm = 2bt/2c. This will ensure that as long as different fixed-length
public message numbers (i.e. nonces) are used, the tweak inputs of all the tweakable block cipher
calls are all unique. This also naturally implies that |N | = log2(maxm) = bt/2c. Note that there is
a tradeoff possible here between maxl and maxm, as long as maxl ·maxm = 2t−3.

2.1 Parameters

Joltik has two main parameters: the key length k and the public message number length |N |. The
key length is between 64 bits and 128 bits, while the public message number length is between 24
bits and 48 bits. The tag size τ is fixed to 64 bits. These parameters are related to the key and tweak
sizes used in the ad-hoc tweakable cipher. We instantiate two modes with this cipher: the first is for
nonce-respecting adversaries (denoted with a 6= sign), while the second is for nonce misuse-resistant
adversaries (denoted with a = sign). For this reason, we introduce a third parameter, that signals
the mode of our authenticated encryption scheme.

2

2.2 Recommended Parameter Sets

The public message number is the nonce. For each of the two modes, we recommend four parameter
sets (hence in total, we have 8 sets). For a specific mode, we do not have preferred parameters set,
however our preferred mode is the nonce-respecting mode (denoted as Joltik6=, i.e. the first four
entries in the Table 2.1 below).

Name k t n |N | τ

Joltik6=-64-64 64 64 64 32 64

Joltik6=-80-48 80 48 64 24 64

Joltik6=-96-96 96 96 64 48 64

Joltik6=-128-64 128 64 64 32 64

Joltik=-64-64 64 64 64 32 64

Joltik=-80-48 80 48 64 24 64

Joltik=-96-96 96 96 64 48 64

Joltik=-128-64 128 64 64 32 64

Table 2.1: Recommended parameter sets for Joltik. Parameters k, t, |N | and τ are related to
the signature of the inner tweakable block cipher of Joltik.

Joltik 6=-64-64, Joltik=-64-64, Joltik 6=-80-48, Joltik=-80-48 are based on the inter-
nal block cipher Joltik-BC-128, while Joltik6=-96-96, Joltik=-96-96, Joltik6=-128-64, and
Joltik=-128-64 are based on the internal block cipher Joltik-BC-192.

2.3 The Authenticated Encryption Joltik

In this section, we provide the high-level description of our proposal. Joltik uses a tweakable
block cipher Joltik-BC as internal primitive (specified in Section 2.4), and we describe here the
simple authenticated encryption modes built on top of it. Joltik has two main mode variants:

• E 6= and D 6= (see Section 2.3.1): the first variant is for where adversaries are assumed to be
nonce-respecting, meaning that the user must ensure that the value N will never be used
for encryption twice with the same key. This mode is largely inspired from ΘCB3 [24], the
tweakable block cipher generalization of OCB3. We will denote E 6= the encryption part of this
first variant (and D 6= the verification/decryption part).

• E= and D= (see Section 2.3.2): the second variant, quite close to the first one and inspired
by COPA mode [1], relaxes this constraint and allows the user to reuse the same N with
the same key. We will denote E= the encryption part of this first variant (and D= the
verification/decryption part).

2.3.1 Nonce-Respecting Mode: E 6= and D 6=

The encryption algorithm E 6= is depicted in Figures 2.1, 2.2 and 2.3, and an algorithmic description
is given in Algorithm 1. The verification/decryption algorithmic description of D 6= is given in
Algorithm 2. We note that our scheme follows the framework from ΘCB3 [24] and therefore directly
benefits from the security proof regarding authentication and privacy.

3

A1

E2,N,1
K

0

A2

E2,N,2
K

. . .

Ala

E2,N,la
K

. . . Auth

(a) Without padding.

A1

E2,N,1
K

0

A2

E2,N,2
K

. . .

Ala

E2,N,la
K

A∗10∗

E6,N,la
K

Auth. . .

(b) With padding.

Figure 2.1: Handling of the associated data for the nonce-respecting mode.

M1

E0,N,1
K

C1

M2

E0,N,2
K

C2

Ml

E0,N,l
K

Cl

.

Σ

E1,N,l
K

tag

Auth
final

Figure 2.2: Message processing: in the case where the message-length is a multiple of the block
size: no padding needed.

M1

E0,N,1
K

C1

M2

E0,N,2
K

C2

Ml

E0,N,l
K

Cl

.

M∗10∗

0n

E4,N,l
K

C∗

pad

Σ

E5,N,l
K

tag

Auth
final

Figure 2.3: Message processing: in the case where the message-length is a not multiple of the
block size. Note that the checksum Σ is computed with a 10∗ padding for block M∗.

4

Algorithm 1: The encryption algorithm E 6=K(N,A,M).
The value N is encoded on log2(maxm) bits, while the integer values i, l and la are encoded
on log2(maxl) bits.

/* Associated data */
A1|| . . . ||Ala ||A∗ ← A where each |Ai| = n and |A∗| < n
Auth← 0n

for i = 1 to la do
Auth← Auth⊕ EK(010||N ||i, Ai)

end
if A∗ 6= ε then

Auth← Auth⊕ EK(110||N ||la, pad10∗(A∗))
end

/* Message */
M1|| . . . ||Ml||M∗ ←M where each |Mi| = n and |M∗| < n
Checksum← 0n

for i = 1 to l do
Checksum← Checksum⊕Mi

Ci ← EK(000||N ||i,Mi)

end
if M∗ = ε then

Final← EK(001||N ||l,Checksum)
C∗ ← ε

else
Checksum← Checksum⊕ pad10∗(M∗)
Pad← EK(100||N ||l, 0n)
C∗ ←M∗ ⊕ trunc|M∗|(Pad)

Final← EK(101||N ||l,Checksum)

end

/* Tag generation */
tag← truncτ (Final⊕Auth)

return (C1|| . . . ||Cl||C∗, tag)

5

Algorithm 2: The verification/decryption algorithm D 6=K(N,A,C, tag).
The value N is encoded on log2(maxm) bits, while the integer values i, l and la are encoded
on log2(maxl) bits.

/* Associated data */
A1|| . . . ||Ala ||A∗ ← A where each |Ai| = n and |A∗| < n
Auth← 0n

for i = 1 to la do
Auth← Auth⊕ EK(010||N ||i, Ai)

end
if A∗ 6= ε then

Auth← Auth⊕ EK(110||N ||la, pad10∗(A∗))
end

/* Ciphertext */
C1|| . . . ||Cl||C∗ ← C where each |Ci| = n and |C∗| < n
Checksum← 0n

for i = 1 to l do
Mi ← DK(000||N ||i, Ci)
Checksum← Checksum⊕Mi

end
if C∗ = ε then

Final← EK(001||N ||l,Checksum)
M∗ ← ε

else
Pad← EK(100||N ||l, 0n)
M∗ ← C∗ ⊕ trunc|C∗|(Pad)

Checksum← Checksum⊕ pad10∗(M∗)
Final← EK(101||N ||l,Checksum)

end

/* Tag verification */
tag′ ← truncτ (Final⊕Auth)
if tag′ = tag then

return (M1|| . . . ||Ml||M∗)
else

return ⊥
end

6

2.3.2 Nonce-Misuse Resistant Mode: E= and D=

The encryption algorithm E= is depicted in Figures 2.4, 2.5 and 2.6 and an algorithmic description
is given in Algorithm 3. The verification/decryption algorithmic description of D= is given in
Algorithm 4. We note that our scheme is a direct adaptation from the COPA [1] construction. If
the message is not a multiple of n bits, it goes through a 10∗ padding and the ciphertext size
might be bigger than the message size. We kept this variant in order to ease the description of our
scheme. However, a solution which overcomes this issue is provided in the COPA article [1], where
tag splitting is used for messages with |M | < n and XLS [33] for messages with |M | > n.

A1

E2,N,1
K

0

. . .

Ala−1

E2,N,la−1
K

. . .

Ala

. . .

E6,N,la
K

Auth

(a) Without padding.

A1

E2,N,1
K

0

. . .

Ala

E2,N,la
K

. . .

A∗10∗

E6,N,la
K

Auth

(b) With padding.

Figure 2.4: Handling of the associated data for the nonce-respecting mode.

M1

E0,N,1
K

Auth

Ml−1

E0,N,l−1
K

. . .

E4,N,1
K

C1

. . .

. . .

Ml

E1,N,l
K

. . .

E4,N,l−1
K

Cl−1

Σ

E3,N,l
K

E5,N,l
K

Cl

E7,N,l
K

tag
final

Figure 2.5: Message processing: in the case where the message-length is a multiple of the block
size: no padding needed.

M1

E0,N,1
K

Auth

Ml

E0,N,l
K

. . .

E4,N,1
K

C1

. . .

. . .

M∗10∗

E1,N,l
K

. . .

E4,N,l
K

Cl

Σ

E3,N,l
K

. . .

E5,N,l
K

C∗

E7,N,l
K

tag
final

Figure 2.6: Message processing: in the case where the message-length is a not multiple of the
block size. Note that the checksum Σ is computed with a 10∗ padding for block M∗.

7

Algorithm 3: The encryption algorithm E=
K(N,A,M).

The value N is encoded on log2(maxm) bits, while the integer values i, l and la are encoded
on log2(maxl) bits.

/* Associated data */
A1|| . . . ||Ala ||A∗ ← A where each |Ai| = n and |A∗| < n
Auth← 0n

for i = 1 to la − 1 do
Auth← Auth⊕ EK(010||N ||i, Ai)

end
if A∗ 6= ε then

Auth← Auth⊕ EK(010||N ||la, Ala)
Auth← Auth⊕ pad10∗(A∗)

else
Auth← Auth⊕Ala

end
Auth← EK(110||N ||la,Auth)

/* Message */
M1|| . . . ||Ml||M∗ ←M where each |Mi| = n and |M∗| < n
Checksum← 0n

for i = 1 to l − 1 do
Checksum← Checksum⊕Mi

Auth← Auth⊕ EK(000||N ||i,Mi)
Ci ← EK(100||N ||i,Auth)

end
if M∗ 6= ε then

Checksum← Checksum⊕Ml

Auth← Auth⊕ EK(000||N ||l,Ml)
Cl ← EK(100||N ||l,Auth)
M∗ ← pad10∗(M∗)
Checksum← Checksum⊕M∗
Auth← Auth⊕ EK(001||N ||l,M∗)
C∗ ← EK(101||N ||l,Auth)

else
Checksum← Checksum⊕Ml

Auth← Auth⊕ EK(001||N ||l,Ml)
Cl ← EK(101||N ||l,Auth)
C∗ ← ε

end

/* Tag generation */
Auth← Auth⊕ EK(011||N ||l,Checksum)
Final← EK(111||N ||l,Auth)
tag← truncτ (Final)

return (C1|| . . . ||Cl||C∗, tag)

8

Algorithm 4: The verification/decryption algorithm D=
K(N,A,C, tag).

The value N is encoded on log2(maxm) bits, while the integer values i, l and la are encoded
on log2(maxl) bits.

/* Associated data */
A1|| . . . ||Ala ||A∗ ← A where each |Ai| = n and |A∗| < n
Auth← 0n

for i = 1 to la − 1 do
Auth← Auth⊕ EK(010||N ||i, Ai)

end
if A∗ 6= ε then

Auth← Auth⊕ EK(010||N ||la, Ala)
Auth← Auth⊕ pad10∗(A∗)

else
Auth← Auth⊕Ala

end
Auth← EK(110||N ||la,Auth)

/* Ciphertext */
C1|| . . . ||Cl ← C where each |Ci| = n
Checksum← 0n

for i = 1 to l − 1 do
Xi ← DK(100||N ||i, Ci)
Mi ← DK(000||N ||i,Auth⊕Xi)
Checksum← Checksum⊕Mi

Auth← Xi

end
Xl ← DK(101||N ||l, Cl)
Ml ← DK(001||N ||l,Auth⊕Xl)
Checksum← Checksum⊕Ml

Auth← Xl

Ml ← unpad10∗(Ml)

/* Tag verification */
Auth← Auth⊕ EK(011||N ||l,Checksum)
Final← EK(111||N ||l,Auth)
tag′ ← truncτ (Final)
if tag′ = tag then

return (M1|| . . . ||Ml)
else

return ⊥
end

9

2.4 The Tweakable Block Cipher Joltik-BC

Joltik-BC is an ad-hoc tweakable block cipher so that besides the two standard inputs, a plaintext
P (or a ciphertext C) and a key K, it takes an additional input called a tweak T . The cipher
EK(T, P) has 64-bit state and variable size key and tweak. The encryption and decryption are
defined in a standard way for tweakable ciphers, i.e. EK(T, P) = C and E−1

K (T,C) = P . We define
two ciphers, Joltik-BC-128 for which the cumulative size of the key and the tweak is 128 bits, and
Joltik-BC-192 for which the cumulative size of the key and the tweak is 192 bits.

Joltik-BC is an AES-like design, i.e. it is an iterative substitution-permutation network that
transforms the initial plaintext through series of round functions (that depend on the key and the
tweak) to a ciphertext. As most AES-like designs, the state of Joltik-BC is seen as 4× 4 matrix
of nibbles, where each nibble is a 4-bit word (we denote the nibble size with c, thus c = 4). We
denote the base field by K as GF (16) defined by the irreducible polynomial x4 + x+ 1 (sometimes
noted in hexadecimal display 0x13). The number r of rounds is 24 for Joltik-BC-128 and 32 for
Joltik-BC-192. One round, similarly to a round in AES, has the following four transformations
applied to the internal state in the order specified below:

• AddRoundTweakey – XOR the 64-bit round subtweakey (defined further) to the internal state,

• SubNibbles – Apply the 4-bit S-Box S defined below to the 16 nibbles of the internal state,

• ShiftRows – Rotate the 4-nibble i-th row left by ρ[i] positions, where ρ = (0, 1, 2, 3).

• MixNibbles – Multiply the internal state by the 4× 4 constant MDS matrix M defined below.

After the last round, a final AddRoundTweakey operation is performed to produce the ciphertext.

The 4-bit S-Box S we use in Joltik-BC is the one selected for the Piccolo block cipher [35],
and is exhaustively defined by:(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14 4 11 2 3 8 0 9 1 10 7 15 6 12 5 13

)
,

The MDS matrix M ∈ K we use in Joltik-BC is non-circulant, MDS and involutory:

M =


1 4 9 13

4 1 13 9

9 13 1 4

13 9 4 1

 = M−1.

We refer to [21] for more details on this class of matrices.

The round function f−1 for a decryption round, naturally, is similar as for the encryption, and
the inverse of the four round permutations are applied in a reversed order. We also note that the
subtweakeys are used in reverse order. Namely, we perform r times the following operations:

• InvAddRoundTweakey – XOR the 64-bit round subtweakey to the internal state,

• invMixNibbles – Multiply the internal state by a 4 × 4 MDS matrix M−1 ∈ K previously
defined (we recall that M = M−1 as M is an involution),

• InvShiftRows – Rotate the 4-nibble i-th row right by ρ[i] positions, where ρ = (0, 1, 2, 3),

• InvSubNibbles – Apply the inverse 4-bit S-Box S−1 to the 16 nibbles of the internal state (see
Appendix A.1 for actual values).

Finally, a final InvAddRoundTweakey operation is performed to produce the plaintext value.

10

Definition of the subtweakeys. The description of the cipher above has so far followed the
classical construction of an AES-like block cipher. The operation AddRoundTweakey, and in particular
the production of the subtweakeys, is where Joltik-BC differs from the other ciphers.

Let us denote with STKi the subtweakey (a 64-bit word) that is added to the state at round i
of the cipher with the AddRoundTweakey operation. For Joltik-BC-128, subtweakey is defined as:

STKi = TK1
i ⊕ TK2

i ⊕RCi,

whereas for Joltik-BC-192 is defined as:

STKi = TK1
i ⊕ TK2

i ⊕ TK3
i ⊕RCi.

Tweakey Schedule (p = 2)

h

h 2
KT

XOR RC0

f

h

h 2

XOR RC1

fP = s0

h

h

. . .

. . .

XOR RC2

. . .

XOR RCr−1

f

h

h 2

XOR RCr

sr = C

Figure 2.7: Instantiation of the TWEAKEY framework for Joltik-BC-128.

The 64-bit words TK1
i , TK

2
i , TK

3
i are outputs produced by a special key schedule algorithm.

A single instance of this algorithm, denoted as KS(W,α), takes as inputs a 64-bit word W and
a nibble α and (as any other key schedule) produces subkeys TK0, TK1, The subkeys are
produced sequentially, one from another (where TK0 = W), by applying two permutations: a
nibble permutation h, and a finite field multiplication g:

TKi+1 = g(h(TKi)).

The nibble permutation h is defined as:(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

where we number the 16 nibbles of the internal state by the usual ordering:
0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

 .

Furthermore, g is finite field multiplication of each nibble by α (recall that α is input to the key
schedule algorithm).

Let us define the inputs W and α. Denote the concatenation of the key K and the tweak T
as KT , i.e. KT = K||T . Then, in Joltik-BC-128, the size of KT is 128 bits. The first (most
significant) 64 bits of KT is W1, while the second W2. Then, TKi

1 are the output words of the key
scheduling algorithm KS(W1, 1), and TKi

2 are the output words of the key scheduling algorithm
KS(W2, 2). For Joltik-BC-192, the size of KT is 192 bits, there are three words W1,W2,W3,
and TKi

1 are outputs of KS(W1, 1), TKi
2 are the outputs of KS(W2, 2), and TKi

3 are outputs of
KS(W3, 4). We note that the second variable to the KS functions are different on purpose, such
the more frequently updated parameter in the implementation does not suffer for a multiplication.
This parameter is the tweak input and has an α coefficient equals to 1 at most as possible.

11

Finally, RCi are the key schedule round constants (similar to the constants used in LED

cipher [17]), and are defined as:

RCi =


0 (rc5||rc4||rc3) 0 0

1 (rc2||rc1||rc0) 0 0

2 (rc5||rc4||rc3) 0 0

3 (rc2||rc1||rc0) 0 0

 .

The values of (rc5, rc4, rc3, rc2, rc1, rc0) are given in Appendix A.2.

12

Chapter 3

Security Claims

We provide our security claims for the different variants of Joltik in Table 3.1. We recall that the
variants are defined in part by the bit size k of key and the bit size t of the tweak in Section 2.2.
We give the security goals expressed in terms of these parameters as they are the same for all the
variants within the same mode.

One can see that we do claim full k-bit security for Joltik6= for a nonce-respecting user, in
contrary to other modes like AES-GCM [28] or OCB3 [24], which only ensure birthday-bound security.
Even though we only claim birthday-bound security concerning Joltik= in the nonce-respecting
user model, we conjecture that full security can be reached.

Security (bits)

Goal (nonce-respecting user) Joltik6= Joltik=

Confidentiality for the plaintext k n/2

Integrity for the plaintext n n/2

Integrity for the associated data n n/2

Integrity for the public message number n n/2

Security (bits)

Goal (nonce-misuse user) Joltik6= Joltik=

Confidentiality for the plaintext none n/2

Integrity for the plaintext none n/2

Integrity for the associated data none n/2

Integrity for the public message number none n/2

Table 3.1: Security goals of Joltik. The upper table stands for the situation where the user will
never repeat the same value N for the same key (nonce-respecting user). The lower table stands
for the situation where such repetitions in N for the same key are allowed (non-misuse user).

In the table we assume the public message number is a nonce and there is no secret message
number. We also assume that the total size of the associated data and the message does not exceed
8 · 2maxl bytes, thus 224 bytes for Joltik6=-80-48, 232 bytes for Joltik6=-128-64, Joltik6=-128-64,
Joltik=-64-64, Joltik=-128-64, and 248 bytes for Joltik 6=-96-96 and Joltik=-96-96. Moreover,
the maximum number of messages that can be handled for a same key is 2maxm , that is 224 for
Joltik6=-80-48, 232 for Joltik 6=-128-64, Joltik6=-128-64, Joltik=-64-64, Joltik=-128-64, and 248

for Joltik6=-96-96 and Joltik=-96-96.

13

Chapter 4

Security Analysis

Our design can be seen as an instantiation of secure authenticated encryption modes based on a
tweakable block cipher. However, the security goal of this cipher, unlike most of the tweakable
block ciphers that only ensure birthday bound security when plugged in the mode, is much higher –
indeed we claim full 64-bit security against all possible attacks in the secret key model. Our claims
are based on the AES wide-trail strategy which trivially provides resistance against the classical
differential and linear cryptanalysis in the single key model and on the fact that we can search for
all related-key/tweak differential trails in the related-key model. We study as well the additional
threats introduced by the key/tweak schedule against the Meet-in-the-Middle (MITM) attacks.

The TWEAKEY framework [20] allows a dual view of the whole tweakable block cipher constructions.
The first is as described previously, i.e. in each round a subkey and a subtweak are added to the
state. In the second view, however, one can treat the XOR of the subkey and the subtweak as one
single subkey called subtweakey, which is produced from a more complex key schedule (composition
of the original key schedule and tweak schedule). This way the security analysis of TWEAKEY reduces
to the security analysis of a block cipher with more complex key schedule, and where one part of
the key is secret, and the second is public.

4.1 Differential Attacks

Designing a cipher resistant against single-key differential attacks is fairly simple and can be done
by carefully choosing the diffusion layer (assure that the branch number is high enough). For
resistance against related-key differential attacks, we still do not have such a simple strategy. We do
have, however, search algorithms and tools [5, 6, 14,15,29,36] that given a key schedule can return
the upper bound on probability of the best related-key differential trails, and in the case when such
a bound is low, practically provide and prove the resistance against related-key differential attacks.
We use precisely these algorithms in our security analysis against related-key attacks.

These tools have been designed to look for related-key trails, however, we allow the adversary to
operate in a stronger setting of related-key and possibly related-tweak (or both at the same time)
attacks. Nonetheless, we can accommodate and modify the tools to search for such trails. Although
the modification can be done easily, the feasibility (expressed in the time complexity required the
search algorithm to finish) is the real problem. To cope with this, we use several different tools –
each chosen to provide the probability bounds in the shortest time. More precisely, we alternate
between the search algorithm based on Matsui’s approach [5], split approach [6], and extended split
approach [14]. We omit the details on how these search algorithms operate due to their complexity,
and further, give only the final results (refer to Tables 4.1 and 4.2) produced by the tools.

We have to run two completely different searches due to the accumulative size of the subkeys
and the subtweaks added in each round of the cipher (this size is 128 bits for Joltik-BC-128 and
192 bits for Joltik-BC-192). The best differential trails for these two variants are different as in
the case of the later, the trails are on more rounds (obviously this comes from the fact that the
subkeys and subtweaks nibbles can be canceled more times than in the case of Joltik-BC-128).

14

rounds active
S-Boxes

upper bound on
probability

method used

1 0 20 trivial

2 0 20 trivial

3 1 2−2 Matsui’s

4 5 2−8 Matsui’s

5 9 2−18 Matsui’s

6 12 2−24 Matsui’s

8 ≥ 17 2−34 extended split (4R+4R)

10 ≥ 22 2−44 extended split (5R+5R)

16 ≥ 34 2−68 split (8R+8R)

Table 4.1: Joltik-BC-128: Upper bounds on probability of the best round-reduced related-key
related-tweak differential trails.

rounds active
S-Boxes

upper bound on
probability

method used

1 0 20 trivial

2 0 20 trivial

3 0 20 trivial

4 1 2−2 Matsui’s

5 4 2−8 Matsui’s

6 8 2−12 Matsui’s

12 ≥ 22 2−44 extended split (6R+6R)

24 ≥ 44 2−88 split (12R+12R)

Table 4.2: Joltik-BC-192: Upper bounds on probability of the best round-reduced related-key
related-tweak differential trails.

The final results of the searches are as follows. For the tweakable block cipher Joltik-BC-128,
all related-key related-tweak differential trails on 16 or more rounds have upper bound on probability
of 2−68. On the other hand, for the tweakable block cipher Joltik-BC-192, all related-key related-
tweak differential trails on 24 or more rounds have upper bound on probability of 2−88. Both of
the bounds are below 2−64 (recall that the block size is 64 bits). Note that these are only bounds
and we do not have actual trails that match these bounds, hence the actual probabilities might be
much lower. This, as well as the fact that each cipher has 8 additional rounds compared to the
bound (in case of Joltik-BC-128 we have 24 rounds, for Joltik-BC-192 we have 32 rounds), gives
the ciphers a large security margin against all related-key/tweak attacks.

4.2 Meet-in-the-Middle Attacks

Additionally, we scrutinize the resistance of our design in regard to the recent advanced meet-in-
the-middle attack on AES conducted in [5, 6, 14, 15, 29, 36]. Indeed, this attack strongly relies on the
AES key schedule to propagate linear equations in the meet-in-the-middle strategy to spare some
guesses in both the offline and online phases. As the design we propose introduces a new way to

15

handle the key material, it is of interest to see how it interacts with the AES round function.
For a given tweak value, Joltik-BC behaves as the AES with a new schedule with partially

known values (subtweaks) XORed between each round, without additional input values. This key
schedule is fully linear as it first applies implements a byte permutation and the multiplies each of
the 16 bytes of the state by 2 in GF (256). In that context, a first analysis shows that the advanced
meet-in-the-middle technique from [11] can attack up to 8 rounds, where the AES key schedule for
128-bit keys stops the attack at 7 rounds. Interestingly, the SQUARE key schedule, which is also fully
linear, is immune (to date) to a meet-in-the-middle attack on its full 8 rounds.

4.3 Security of Other Attacks of Joltik-BC

The slide attack is a block cipher cryptanalysis technique [7] that exploits the degree of self-similarity
of a permutation. In Joltik-BC, we have chosen distinct round-dependent constants, which makes
the slide attack impossible to perform.

The integral cryptanalysis [9] of AES-based designs can be very efficient, but only works for
a small number of rounds. In Joltik-BC, we have picked a large number of rounds (24 or 32
depending on the version) so that we cannot conduct this attack on the full version of the cipher.

Rotational cryptanalysis [22] is another class of attacks, which compares the evolution of a
rotated variant of an input words through the encryption process. While this attack has been
successfully applied to ARX designs, but cannot be applied to date to byte-oriented ciphers like
AES-based ciphers, including Joltik-BC. Moreover, this type of attack, as well as internal differential
attack [31], are stopped by the use of constants in the key schedule.

The impossible differential attack on AES [25,26] does not exploit the key schedule, so the same
technique could be applied on Joltik-BC, and achieve the same number of rounds. Again, the
security margin of Joltik-BC due to the number of rounds is large enough to resist to an attack
on the full primitive.

A possible increment in the number of attacked rounds might happen in the scenario of open-key
distinguishers (even though we have not been able to improve the known attacks [10,16,19] using
this extra tweak input). However, we emphasize that we do not claim any resistance of Joltik-BC
in this attack model.

16

Chapter 5

Features

The main idea heavily exploited in the design of Joltik is the introduction of a lightweight
tweakable block cipher Joltik-BC, belonging to the family of the well-known AES-like primitives.
The tweakable block cipher is a secure instantiation of a more general framework (TWEAKEY [20])
and does not rely on big field multiplications as previous tweakable ciphers proposals. Structurally,
Joltik-BC can be seen as a standalone primitive, whereas previous attempts at building tweakable
block ciphers use a given block cipher as a black box and use it in a particular mode.

This design especially targets constrained environments as the hardware footprint is very small,
and the authentication encryption scheme built on top of it comes with a very low overhead. Indeed,
while we use OCB3 [24] mode which ensures only birthday-bound security with a classical block
cipher, Joltik brings full security at a very low extra cost. We detail more precisely below the
main features on Joltik.

• Joltik is very lightweight. We crafted very small 64-bit tweakable block ciphers to obtain a
lightweight overall authenticated encryption design. Moreover, when OCB or COPA modes are
instantiated with a tweakable block ciphers, the area required is maintained at a low level
since no computation in big fields are required anymore in order to build the tweakable block
cipher from a classical block cipher. For example, we estimate that Joltik6=-64-64 and
Joltik 6=-80-48 can be implemented in hardware with around 2100 GE, while Joltik 6=-96-96
and Joltik6=-128-64 would need around 2600 GE.

• Joltik offers full security with only one call to the block cipher per message block on average.
In comparison, the two main modes for authenticated encryption to date, namely OCB3 and
AES-GCM [28], ensure security up to the birthday bound, so that very few situations in the
area of lightweight cryptography would allow to have such a low security with a 64-bit block
cipher. Some previous attempts to build full-security, dedicated AES-based authenticated
encryption schemes have appeared in the past (see ALE [8] or FIDES [4]), however both have
been broken, in [23] and [13] respectively.

• Joltik behaves very good for small messages. This is due again to the fact that we use
a tweakable block cipher: it allows to avoid any precomputation (like in OCB or AES-GCM).
The first 64-bit message block is handled directly, and taking in account the tag generation
one needs m + 1 internal cipher calls to process messages of m block of n bits each. This
is particularly important in many lightweight applications where message sent are usually
composed of a few dozens of bytes (this is common disadvantage of sponge-based or stream
cipher based lightweight designs).

• Joltik has a good security margin for all the recommended parameters. We measure the
security margin in terms of number of rounds: the smallest variant of Joltik counts 24
rounds, while the best known attacks on AES-based design can reach around 7 to 14 rounds,
depending of the adversarial model. The largest version of Joltik subjects to the same attack
offers an even bigger security margin with 32 rounds. Interestingly, Joltik-BC is very similar

17

to LED, but we have shown that a good key schedule can significantly reduce the number of
rounds required for a secure AES-like cipher: Joltik-BC with 128-bit key/tweak space has
only 24 rounds, whereas LED with 128-bit key has 48, and a few attacks (see [12,30]) reach
up to 32-rounds of the cipher.

• The security arguments of Joltik are directly inherited from the two modes used in our
design. Indeed, for nonce-respecting users, Joltik benefits from the proofs of OCB3 mode,
while for nonce-repeating users, we designed a mode generalizing COPA [1] to tweakable block
ciphers.

• Joltik also benefits from the vast research literature on the cryptanalysis of the AES. In
effect, being an AES-based primitive, the tweakable block ciphers Joltik-BC is subject to the
same class of attacks than AES, which consists of an active research line since 15 years.

• Joltik is simple for both the construction of the internal tweakable block cipher and for the
authentication mode. It uses well-studied building blocks and is arguably easy to analyze. The
implementation of Joltik is also easy, and can reuse the design strategies, implementations
and optimizations available for the AES and lightweight AES-like ciphers [3].

• Joltik-BC is a cipher intended for lightweight, but we can approximate the speed in software.
Based on the result from [3] of implementing lightweight block ciphers in software (in particular
on the speed of LED), we can give a rough estimate of the speed of Joltik-BC. As the number
of rounds in Joltik-BC does not exceed the number of rounds in LED-64, and Joltik-BC

has a bit more complex key schedule, we expect that our tweakable block cipher will run in
around 15 cycles per byte on the latest Intel processors.

• Joltik can resists to side-channel attacks with the same techniques as AES. Literature in this
area available for the AES can be very easily adapted to the case of any AES-based designs,
including Joltik.

• Joltik-BC has smooth parameters handling. We define some recommended parameter sets in
this document, but any user can pick its own variant of Joltik-BC by adapting the key and
tweak sizes at his/her convenience. This flexibility comes from the unified vision of the key
and tweak material brought by the TWEAKEY framework. It means that one implementation
of the cipher is sufficient to support all versions with different key and tweak sizes (with the
same accumulative size). This feature extends to the whole Joltik design.

18

Chapter 6

Design Rationale

The starting point of our design is to provide the first ad-hoc lightweight tweakable block cipher
that has a full security. Having such a primitive is beneficial for many authenticated encryption
modes that are secure beyond the birthday bound, but loose this feature when instantiated with
the current constructions that use a cipher as a black box and surround it with addition of words
produced by a finite field multiplications (beyond birthday security authenticated encryption mode
that use a block cipher remain quite slow). Therefore, designing a secure tweakable block cipher
would enable us to reach full 64-bit security for both confidentiality and authenticity. This direction
of research was not explored yet as it was believed that ad-hoc tweaking of AES-like ciphers is not
an easy task from points of view of both security and efficiency (adding some extra freedom to
the attacker seems to enable more powerful attacks and thus implies many more rounds). As our
design is lightweight, we are also careful in choosing the internal permutations of the cipher and
the mode that provides the authenticated encryption.

6.1 Details for the STK construction

Designing a secure round function for block ciphers has become a fairly easy task – an S-Box
layer and a diffusion layer based on MDS code immediately provide good security margins against
differential and linear attacks even when the number of rounds in the cipher is small. The problem
when designing ciphers, however, lies in how to choose the key schedule – for the cipher to be secure
the number of rounds has often to be very large. The complexity of this task increases manifold if
the key size is larger and if the key schedule is supposed to be simple (no non-linear operations,
and as few as possible linear operations).

We provide a solution to tackle the above two main points in the form of the STK construction.
This construction gives a simple key schedule for arbitrary length keys and with an additional
checks on related-key attacks, ensures that the cipher is secure. The number of total rounds in the
cipher is kept fairly small because of a special trick we use in the key schedule. We split the master
key on equal key sizes, each with its own (but similar to the other) simple schedule that produces
subkeys that are added simultaneously to the state. Due to the similarity of the schedule, and the
use of finite field multiplications, in a related-key attack the differences in the nibbles of the subkeys
cannot cancel each other too many times (in subkeys of different rounds), and thus security against
these type of attacks can be proven when then number of rounds is not necessarily very high.

We denote with TK-p the cipher where the master key is p times larger than the state (and thus
is divided into p keys). In our proposals, we work only with TK-2, and TK-3, but the same strategy
applies when p > 3. Let us choose an arbitrary position of a nibble at the beginning of each of the
p key schedules. For instance, we fix the position (1, 1) and we investigate how the p nibbles at this
position at the beginning of the p key schedules, change during the production of the subtwekeys.
What is interesting is that as all key schedules apply the same permutations, the initial p nibbles
will always be XORed at the same position in the subtweakeys (taking into account the definition
of the permutation h we can see that the positions through the rounds change as: (1,1) in the first,

19

(2,1) in the second, (3,2) in the third, (4,4) in the fourth, etc). From the initial p-tuple of nibble
values x = [x0

1, . . . , x
0
p], the STK key schedule (which can be seen as p similar key schedules that

differ only in the constants αi, i = 1, . . . , p) produces r tuples [x1
1, . . . , x

1
p], . . . , [x

r
1, . . . , x

r
p], such

that xkj+1 = αi · xkj . All of them are integrated to the internal state by considering the r + 1 XOR

values
⊕p

i=1 x
k
i , for 0 ≤ k ≤ r. Those values incorporated to the internal state can be rewritten by

using the following p× (r + 1) Vandermonde matrix

V =
(
αji

)
i,j

=


α0

1 α1
1 . . . αr1

α0
2 α1

2 . . . αr2
...

...
. . .

...

α0
p α1

p . . . αrp

 ,

by a right-matrix multiplication: y = x ×V, for x = [x0
1, . . . , x

0
p]. To minimize the number of

non-zero elements in y for x 6= 0, we need to ensure that all the rows in V are linearly independent.
This is true as long as the αi coefficients, 1 ≤ i ≤ p are pairwise distinct.

As a result, cancellation of values (and differences in general as the key schedule is linear)
in the chosen nibble of TK-p cannot occur more than p − 1 times. For TK-2 this means that the
accumulative difference coming from the subkeys can be canceled only once by XOR of the subkeys
(but the remaining will have this difference). For TK-3, this can happen twice.

The above strategy of designing the key schedule is only the first step that ensures the schedule
is not trivially insecure against related-key attacks (and that does not require a huge number of
rounds to make the cipher secure). The steps that follow are the choice of the permutation and the
choice of the constants α’s. The choice of permutation was done after trying several of them – we
settled down on the one that provides security against related-key attacks in the least number of
rounds (we inspected the security with the tools specified in Section 4). The constants were chosen
to make the construction lightweight implementation-friendly.

6.2 From Block Cipher to Tweakable Block Cipher

The STK construction (with specified permutation and α’s) provides only a secure block cipher with
an arbitrary length key. However, turning this block cipher into a tweakable block cipher is trivial –
some bits of the master key are announced as tweak, while the remaining bits are kept as secret
key bits. As the key and the tweak are treated in the same way in our designs, we give them the
general name tweakey. From TK-2 block cipher that in our case has 128-bit key and 64-bit block, we
were able to obtain a tweakable block cipher Joltik-BC-128 that can be used with 64-bit key and
64-bit tweak, or with 80-bit key and 48-bit tweak. A similar transition was made from the TK-3
block cipher Joltik-BC-192 to 128-bit key and 64-bit tweak, or with 96-bit key and 96-bit tweak.

During this transition, it is important to note that the security of the cipher against related-key
(and now related-tweak) attacks does not drop, even though parts of the original master key become
available to the attacker. The reason for this is twofold: 1) the key schedule is linear, it never has
any active S-boxes, and 2) the XOR of all subkeys/subtweaks in each round to the state is secret
(as long as one of them is secret), and also the state is secret (thus the attacker cannot reduce the
number of active S-boxes by controlling the tweak).

6.3 On the Round Function

The round function in our (tweakable) block cipher design is similar to the round function of LED.
We have, however, introduced a small modification to the components of LED to assure maximal
friendliness to lightweight implementations. With this respect, we have changed the S-Box and
the matrix in the diffusion layer. For the substitution layer, we have selected the same S-Box

20

as in the Piccolo block cipher, which offers a very compact implementation in hardware. This
S-Box has been selected in all the 4-bit S-Boxes as it is optimal for both linear and differential
cryptanalysis. We note that it as no fixed point, and has an overall algebraic degree of 3. For the
diffusion layer, we have also chosen a compact implementation on 4× 4 MDS involutory matrix,
which can therefore be used as is for both encryption and decryption.

21

Chapter 7

Hardware Performances

Due to time constraints, we do not provide hardware implementations of Joltik. However, we
explain in this chapter why we believe Joltik is a very lightweight candidate and the logic behind
our ASIC implementation estimation.

Since Joltik-BC is also a 64-bit lightweight AES-like cipher, our starting point is the best ASIC
lightweight implementation [17] of LED-128, that only requires 1265 GE (from which 77% comes
from the memory to store the key and the internal state). The main differences of Joltik-BC
compared to LED-128 is that the Sbox in Joltik-BC is a bit more compact than in LED, but on the
other hand the diffusion matrix can not be computed serially as it is the case for LED. This later
point should imply 3 nibbles (12 bits) of extra memory for the computation, which we estimate to
12×6 = 72 GE (counting 6 GE for a two-bit input flip-flop). The coefficients used in the Joltik-BC
matrix are very lightweight (all coefficients in a row can be implemented with only 6 XORs [21]
thanks to the careful choice of the coefficients and the finite field), so this should not have much
impact compared to LED. Both LED-128 and Joltik-BC-128 have the same tweakey size, and both
use a very light tweakey schedule. The permutation for the tweakey in Joltik-BC-128 can be
implemented with bit wiring so this should have no impact on the area figures. The main difference
would be that 128 bits are XORed from the tweakey state to the internal state each round, while
in the case of LED it is only 64 bits. Therefore, we have to add an extra 64 × (2.67) = 171 GE
by counting 2.67 GE per XOR (which might sometimes be optimized to 2.33 GE). We omit the
multiplication by 2 in GF (24)/0x13 since it can be implemented with only shifts and a single XOR.
Overall, we expect an overhead of 243 GE for Joltik-BC-128 compared to LED-128. This would
lead us to about 1500 GE to implement Joltik-BC-128.

The reasoning for Joltik-BC-192 is exactly the same, except that we have an extra 64×(2.67) =
171 GE to compute the extra tweakey XOR in the internal state. Moreover, an additional memory
of 64 bits of tweakey material is required, which adds another 64× (4.67) = 298 (counting 4.67 GE
for a single-bit input flip-flop). Finally, we omit the multiplication by 4 in GF (24)/0x13 since it
can be implemented with only shifts and two XORs. Overall, we expect Joltik-BC-192 to fit in
about 2000 GE.

Concerning the authenticated encryption mode for Joltik 6=, one can remark that it calls directly
Joltik-BC on the incoming message blocks and directly outputs the corresponding ciphertext
blocks. However, one needs to take in account the following three main potential overhead costs:

• a 64-bit checksum needs to be computed and stored. Therefore, one should count an additional
64× (4.67 + 2.67) = 470 GE.

• the tweak value needs to be increased every Joltik-BC call, and this operation can be
quite expensive, because the carries needs to be taken care of. Comparing with other
implementations, we estimate to 4 GE per bit for an integer addition when minimal area is the
implementation goal. In our case, the addition is done on maxl = 29 bits, hence 29× 4 = 116
GE. We note that using a different tweak update function (for example using an LFSR) would

22

drastically reduce this cost without changing the security aspects of Joltik6= (we only need
that the counter runs through all the possible values, the ordering does not matter).

• in case where associated data is input, one can see that a 64-bit authentication value needs
to be maintained until the end, similarly to the checksum, and this would add another
64× (4.67 + 2.67) = 470 GE. However, this can be simply avoided if the associated data is
computed after the message blocks (by directly XORing the output of the Joltik-BC calls to
the checksum register). Therefore, we do not add extra cost for this part.

All in all, we estimate that Joltik6=-64-64 and Joltik 6=-80-48 should be able to fit in about
2100 GE, and Joltik6=-96-96 and Joltik 6=-128-64 in 2600 GE. Concerning Joltik=, the reasoning
is exactly the same, except that the 64-bit temporary authentication value must be maintained.
Therefore, an extra 470 GE will have to be taken in account, we estimate that Joltik=-64-64 and
Joltik=-80-48 should be able to fit in about 2600 GE, and Joltik=-96-96 and Joltik=-128-64 in
3100 GE. We emphasize that these are only very rough and possibly optimistic estimations and
only real implementations will be able to confirm them.

We note that one very good advantage for Joltik in hardware applications is that the speed
overhead for small messages is null. Indeed, the very first message block is ciphered directly, without
any precomputation. In RFID applications where only small data is likely to be protected (like a
96-bit Electronic Product Code), this will have a huge impact compared to sponge based or stream
cipher based lightweight proposals that usually requires a long initialization period.

We also recall that if both encryption and decryption capabilities are required, Joltik-BC
is a good candidate, as the diffusion matrix is involutory. The tweak and key schedule are also
pretty much the same in encryption and decryption modes. These two aspects will minimize the
decryption overhead.

Finally, since for Joltik6=-64-64 and Joltik=-64-64, the key is never changed and used as is, it
can be hard-wired in some applications permitting this feature in order to save 470 GE.

23

Chapter 8

Intellectual Property

Joltik is not patented and is free for use in any application. If any of this information changes,
the submitter/submitters will promptly (and within at most one month) announce these changes
on the crypto-competitions mailing list. We note that since Joltik uses a mode belonging to the
generic ΘCB3 framework, it is unclear if patents relative to OCB (such as United States Patent No.
7,046,802; United States Palent No. 7,200,227; United States Patent No. 7,949,129; United States
Patent No.8,321,675) apply to our proposal.

24

Chapter 9

Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection committee
regarding the selection or non-selection of this submission as a second-round candidate, a third-
round candidate, a finalist, a member of the final portfolio, or any other designation provided by
the committee. The submitter/submitters understand that the committee will not comment on the
algorithms, except that for each selected algorithm the committee will simply cite the previously
published analyses that led to the selection of the algorithm. The submitter/submitters understand
that the selection of some algorithms is not a negative comment regarding other algorithms, and
that an excellent algorithm might fail to be selected simply because not enough analysis was
available at the time of the committee decision. The submitter/submitters acknowledge that the
committee decisions reflect the collective expert judgments of the committee members and are
not subject to appeal. The submitter/submitters understand that if they disagree with published
analyses then they are expected to promptly and publicly respond to those analyses, not to wait
for subsequent committee decisions. The submitter/submitters understand that this statement is
required as a condition of consideration of this submission by the CAESAR selection committee.

25

Bibliography

[1] Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: Paralleliz-
able and Authenticated Online Ciphers. [34] 424–443

[2] Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing Lightweight Block Ciphers on
x86 Architectures. IACR Cryptology ePrint Archive 2013 (2013) 445

[3] Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing Lightweight Block Ciphers on
x86 Architectures. SAC 2013 (2013) To appear.

[4] Bilgin, B., Bogdanov, A., Knezevic, M., Mendel, F., Wang, Q.: FIDES: Lightweight Authenti-
cated Cipher with Side-Channel Resistance for Constrained Hardware. In Bertoni, G., Coron,
J.S., eds.: CHES 2013. Volume 8086 of LNCS., Springer (August 2013) 142–158

[5] Biryukov, A., Nikolić, I.: Automatic Search for Related-Key Differential Characteristics in
Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and Others. In Gilbert,
H., ed.: EUROCRYPT. Volume 6110 of Lecture Notes in Computer Science., Springer (2010)
322–344

[6] Biryukov, A., Nikolić, I.: Search for Related-Key Differential Characteristics in DES-Like
Ciphers. In Joux, A., ed.: FSE. Volume 6733 of Lecture Notes in Computer Science., Springer
(2011) 18–34

[7] Biryukov, A., Wagner, D.: Slide Attacks. In Knudsen, L.R., ed.: FSE’99. Volume 1636 of
LNCS., Springer (March 1999) 245–259

[8] Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-Based
Lightweight Authenticated Encryption. In: FSE. Lecture Notes in Computer Science (2013)
to appear.

[9] Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher Square. In Biham, E., ed.: FSE’97.
Volume 1267 of LNCS., Springer (January 1997) 149–165

[10] Derbez, P., Fouque, P.A., Jean, J.: Faster Chosen-Key Distinguishers on Reduced-Round AES.
In Galbraith, S.D., Nandi, M., eds.: INDOCRYPT 2012. Volume 7668 of LNCS., Springer
(December 2012) 225–243

[11] Derbez, P., Fouque, P.A., Jean, J.: Improved Key Recovery Attacks on Reduced-Round AES
in the Single-Key Setting. In Johansson, T., Nguyen, P.Q., eds.: EUROCRYPT 2013. Volume
7881 of LNCS., Springer (May 2013) 371–387

[12] Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key Recovery Attacks on 3-round Even-
Mansour, 8-step LED-128, and Full AES2. [34] 337–356

[13] Dinur, I., Jean, J.: Cryptanalysis of FIDES. In: FSE. Lecture Notes in Computer Science
(2014) to appear.

[14] Emami, S., Ling, S., Nikolić, I., Pieprzyk, J., Wang, H.: The resistance of PRESENT-80
against related-key differential attacks. Cryptography and Communications (2013) 1–17

26

[15] Fouque, P.A., Jean, J., Peyrin, T.: Structural Evaluation of AES and Chosen-Key Distinguisher
of 9-Round AES-128. In Canetti, R., Garay, J.A., eds.: CRYPTO 2013, Part I. Volume 8042
of LNCS., Springer (August 2013) 183–203

[16] Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permuta-
tions. [18] 365–383

[17] Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher. [32] 326–341

[18] Hong, S., Iwata, T., eds.: FSE 2010. In Hong, S., Iwata, T., eds.: FSE 2010. Volume 6147 of
LNCS., Springer (February 2010)

[19] Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved Rebound Attack on the Finalist Grøstl. In
Canteaut, A., ed.: FSE 2012. Volume 7549 of LNCS., Springer (March 2012) 110–126

[20] Jérémy Jean and Ivica Nikolić and Thomas Peyrin: Tweaks and Keys for Block Ciphers: the
TWEAKEY Framework (2014) Article in preparation.

[21] Khoongming Khoo and Thomas Peyrin and Siang Meng Sim: Lightweight MDS Involution
Matrices (2014) Article in preparation.

[22] Khovratovich, D., Nikolic, I.: Rotational Cryptanalysis of ARX. [18] 333–346

[23] Khovratovich, D., Rechberger, C.: The LOCAL attack: Cryptanalysis of the authenticated
encryption scheme ALE. In: SAC. Lecture Notes in Computer Science (2013) to appear.

[24] Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption Modes. In
Joux, A., ed.: FSE 2011. Volume 6733 of LNCS., Springer (February 2011) 306–327

[25] Lu, J., Dunkelman, O., Keller, N., Kim, J.: New Impossible Differential Attacks on AES. In
Chowdhury, D.R., Rijmen, V., Das, A., eds.: INDOCRYPT 2008. Volume 5365 of LNCS.,
Springer (December 2008) 279–293

[26] Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved Impossible Differen-
tial Cryptanalysis of 7-Round AES-128. In Gong, G., Gupta, K.C., eds.: INDOCRYPT 2010.
Volume 6498 of LNCS., Springer (December 2010) 282–291

[27] Matsuda, S., Moriai, S.: Lightweight Cryptography for the Cloud: Exploit the Power of
Bitslice Implementation. In Prouff, E., Schaumont, P., eds.: CHES 2012. Volume 7428 of
LNCS., Springer (September 2012) 408–425

[28] McGrew, D., Viega, J.: The Galois/Counter mode of operation (GCM). Submission to NIST.
http://csrc. nist. gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec. pdf (2004)

[29] Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and Linear Cryptanalysis Using
Mixed-Integer Linear Programming. In Wu, C., Yung, M., Lin, D., eds.: Inscrypt. Volume
7537 of Lecture Notes in Computer Science., Springer (2011) 57–76

[30] Nikolić, I., Wang, L., Wu, S.: Cryptanalysis of round-reduced LED. FSE. To appear in Lecture
Notes in Computer Science (2013)

[31] Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In Rabin, T., ed.:
CRYPTO 2010. Volume 6223 of LNCS., Springer (August 2010) 370–392

[32] Preneel, B., Takagi, T., eds.: CHES 2011. In Preneel, B., Takagi, T., eds.: CHES 2011. Volume
6917 of LNCS., Springer (September / October 2011)

[33] Ristenpart, T., Rogaway, P.: How to Enrich the Message Space of a Cipher. In Biryukov, A.,
ed.: FSE 2007. Volume 4593 of LNCS., Springer (March 2007) 101–118

27

[34] Sako, K., Sarkar, P., eds.: Advances in Cryptology - ASIACRYPT 2013 - 19th International
Conference on the Theory and Application of Cryptology and Information Security, Bengaluru,
India, December 1-5, 2013, Proceedings, Part I. In Sako, K., Sarkar, P., eds.: ASIACRYPT
(1). Volume 8269 of Lecture Notes in Computer Science., Springer (2013)

[35] Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An
Ultra-Lightweight Blockcipher. [32] 342–357

[36] Sun, S., Hu, L., Wang, P.: Automatic Security Evaluation for Bit-oriented Block Ciphers in
Related-key Model: Application to PRESENT-80, LBlock and Others. Cryptology ePrint
Archive, Report 2013/676 (2013)

28

Appendix A

Constants Defined in Joltik-BC

A.1 S-Box used in Joltik-BC

0xE 0x4 0xB 0x2 0x3 0x8 0x0 0x9 0x1 0xA 0x7 0xF 0x6 0xC 0x5 0xD

Table A.1: The Piccolo S-Box S used in Joltik-BC.

0x6 0x8 0x3 0x4 0x1 0xE 0xC 0xA 0x5 0x7 0x9 0x2 0xD 0xF 0x0 0xB

Table A.2: The Piccolo S-Box S−1 used in Joltik-BC.

A.2 Constants in the Key Schedule of Joltik-BC

We define in Table A.3 the constants used in the key scheduling algorithm of Joltik-BC for each
round number. The constants are given in terms of bytes, and rc0 represents the less significant bit.

Rounds Constants

1-12 01, 03, 07, 0F, 1F, 3E, 3D, 3B, 37, 2F, 1E, 3C

13-24 39, 33, 27, 0E, 1D, 3A, 35, 2B, 16, 2C, 18, 30

25-32 21, 02, 05, 0B, 17, 2E, 1C, 38

Table A.3: Constants used in the internal block cipher of Joltik-BC.

29

	Introduction
	Specification
	Parameters
	Recommended Parameter Sets
	The Authenticated Encryption Joltik
	Nonce-Respecting Mode: E= and D=
	Nonce-Misuse Resistant Mode: E= and D=

	The Tweakable Block Cipher Joltik-BC

	Security Claims
	Security Analysis
	Differential Attacks
	Meet-in-the-Middle Attacks
	Security of Other Attacks of Joltik-BC

	Features
	Design Rationale
	Details for the STK construction
	From Block Cipher to Tweakable Block Cipher
	On the Round Function

	Hardware Performances
	Intellectual Property
	Consent
	Constants Defined in Joltik-BC
	S-Box used in Joltik-BC
	Constants in the Key Schedule of Joltik-BC

