
CAESAR submission: KђѦюј v1

Designed and submiĴed by:

Guido Bђџѡќћі1
Joan Dюђњђћ1

Michaël PђђѡђџѠ2

Gilles Vюћ AѠѠѐѕђ1

Ronny Vюћ Kђђџ1

http://keyak.noekeon.org/
keyak (at) noekeon (dot) org

Version 1.0
March 13, 2014

1STMicroelectronics
2NXP Semiconductors

http://keyak.noekeon.org/


Contents

1 Definitions 3
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Of bits and bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Padding rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Key pack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Converting a string into blocks . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The Kђѐѐюј-p permutations 4

3 The duplex construction 6
3.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 The serial authenticated encryption mode DѢѝљђѥWџюѝ 8
4.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Comparison with SѝќћєђWџюѝ . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 KђѦюј 14
5.1 Serial instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 The parallelizable authenticated encryption mode KђѦюјLіћђѠ . . . . . . . 15
5.3 Parallelizable instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Security goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Using KђѦюј in the context of CAESAR 20
6.1 Specification and security goals . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Security analysis and design rationale . . . . . . . . . . . . . . . . . . . . . 20
6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4 Intellectual property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.5 Consent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2



KђѦюј is a set of four authenticated encryption functions with support for message
associated data. They are aimed at a wide spectrum of platforms, both dedicated hard-
ware and soĞware ranging from 32-bit embedded processors to modern PC processors
with SIMD units and multiple cores. For the more constrained devices, Kђѡїђ is a very
interesting alternative.

KђѦюј is described in layered fashion, each with its own functionality and properties.
First, it builds on round-reduced versions of the Kђѐѐюј- f [800] and Kђѐѐюј- f [1600] per-
mutations [6]. Then, it uses the duplex construction on top of one of these permutations
[4]. Above the duplex construction is the DѢѝљђѥWџюѝ authenticated encryption mode,
which is an improved version of SѝќћєђWџюѝ [4]. Finally, KђѦюј instances come on top
of DѢѝљђѥWџюѝ.

KђѦюј includes both serial and parallel instances. The serial instances use the DѢ-
ѝљђѥWџюѝ mode directly aĞer absorbing the key and the nonce in a specific coding. The
parallel instances are defined through the KђѦюјLіћђѠ mode, which builds upon DѢ-
ѝљђѥWџюѝ in a way that is consistent with the serial instance definitions. Instances that
best exploit 128-bit and 256-bit SIMD instructions are proposed.

AĞer introducing some notation, basic definitions and the Kђѐѐюј-p permutations in
Sections 1 and 2, we recall the duplex construction in Section 3, followed by the specifica-
tion of the DѢѝљђѥWџюѝmode in Section 4. We specify KђѦюј and KђѦюјLіћђѠ in Section 5
and finally explain how KђѦюј addresses the CAESAR call for proposals in Section 6.

1 Definitions

1.1 Notation

A bit is an element of Z2. A n-bit string is a sequence of bits represented as an element
of Zn

2 . By convention the first bit in the sequence is wriĴen on the leĞ side, i.e., the first
element in the string (b0, b1, . . . , bn−1) is b0. The set of bit strings of all lengths is denoted
Z∗2 and is defined as

Z∗2 = ∪∞
i=0Zi

2.

Similarly, the set of all binary strings of length 0 up to n is denoted by Z≤n
2 , i.e.,

Z≤n
2 = ∪n

i=0Zi
2.

The length in bits of a string s is denoted |s|. The concatenation of two strings a and
b is denoted a||b. In some cases, where it is clear from the context, the concatenation is
simply denoted ab.

1.2 Of bits and bytes

A byte is a string of 8 bits, i.e., an element of Z8
2. The byte (b0, b1, . . . , b7) can also be repre-

sented by the integer value ∑i 2ibi wriĴen in hexadecimal. E.g., the byte (0, 1, 1, 0, 0, 1, 0, 1)
can be equivalently wriĴen as 0xA6. The function enc8(x) encodes the integer x, with
0 ≤ x ≤ 255, as a byte with value x. When the length of a bit string is a multiple of
8, it can also be represented as a sequence of bytes, and vice-versa. E.g., the bit string
(0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1) can also be wriĴen as the sequence (0, 1, 1, 0, 0, 1, 0, 1)
(0, 0, 1, 1, 1, 1, 1, 1) or 0xA6 0xFC.

3



1.3 Padding rules

We use two different padding rules:

• The simple padding, denoted pad10∗[r](|M|), returns a bit string 10q with q =
(−|M| − 1) mod r. When r is divisible by 8 and M is a sequence of bytes, then
pad10∗[r](|M|) returns the byte string 0x01 0x00(q−7)/8.

• The multi-rate padding, denoted pad10∗1[r](|M|), returns a bitstring 10q1 with q =
(−|M| − 2) mod r [4]. When r is divisible by 8 and M is a sequence of bytes, then
pad10∗1[r](|M|) returns the byte string 0x01 0x00(q−14)/8 0x80.

1.4 Key pack

For a key K, we define a key pack of l bits as

keypack(K, l) = enc8(l/8)||K||pad10∗[l − 8](|K|),

where the key K is at most (l − 9)-bit long and where l is a multiple of 8 not greater than
255× 8. That is, the key pack consists of

• a first byte indicating its whole length in bytes, followed by

• the key itself, followed by

• simple padding.

For instance, the 64-bit key K = 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF yields

keypack(K, 144) = 0x12 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF 0x01 0x008.

The purpose of the key pack is to have a uniformway of encoding a secret key as prefix
of a string input.

1.5 Converting a string into blocks

When the input strings (associated data, plaintext or ciphertext) need to be cut into blocks
of some given length ρ bits, we will use the method defined in Algorithm 1. The function
also receives a parameter P that specifies the number of parallel lines of blocks to generate.
If P = 1, the string is simply cut into blocks of ρ bits, except for the last one, which can
be shorter. For P > 1, the blocks are spread cyclically onto P parts, each containing the
same number of blocks. The process is illustrated in Figure 1.

For a 1-dimensional sequence of blocks X ∈ (Z∗2)
∗, the number of blocks in X is de-

noted ∥X∥.

2 The Kђѐѐюј-p permutations

The Kђѐѐюј-p permutations are derived from the Kђѐѐюј- f permutations [6] and have a
tunable number of rounds. A Kђѐѐюј-p permutation is defined by its width b = 25× 2ℓ,
with b ∈ {25, 50, 100, 200, 400, 800, 1600}, and its number of rounds nr. In a nutshell,
Kђѐѐюј-p[b, nr] consists in the application of the last nr rounds of Kђѐѐюј- f [b]. When
nr = 12 + 2ℓ, Kђѐѐюј-p[b, nr] = Kђѐѐюј- f [b].

4



Algorithm 1 CuĴing a string into P lines of blocks of ρ bits, and puĴing it back together.

Interface: S⋆,⋆ = яљќѐјѠ(S, ρ, P) with S ∈ Z∗2 , ρ, P ∈N>0 and S⋆,⋆ ∈ (Z
≤ρ
2 )P×n

Initialize S⋆,⋆ as an array of P× n empty blocks, with n =
⌈
|S|

P×ρ

⌉
.

Cut S into blocks of ρ bits, except for the last block, which can be shorter.
Distribute these blocks in the first column, then in the second column, …, i.e., starting
from S0,0, then S1,0, …, then SP−1,0, then S0,1, etc.
return S⋆,⋆

Interface: S = яљќѐјѠ−1(S⋆,⋆, ρ, P) with S⋆,⋆ ∈ (Z
≤ρ
2 )P×n, ρ, P ∈ N>0, n ∈ N and

S ∈ Z∗2
Initialize S to the empty string
for j = 0 to n− 1 do
for i = 0 to P− 1 do

S← S||Si,j
return S

Figure 1: Illustration of яљќѐјѠ(S, ρ, P) in Algorithm 1. In this figure, the input string S,
with a length comprised between 13ρ and 14ρ, is cut in P = 4 lines. Each line contains
4 blocks: the first line contains 4 full blocks, the second line contains 3 full blocks and 1
partial block, and the last two lines contain 3 full blocks and 1 empty block.

5



The permutation Kђѐѐюј-p[b, nr] is described as a sequence of operations on a state
a that is a three-dimensional array of elements of GF(2), namely a[5, 5, w], with w = 2ℓ.
The expression a[x, y, z] with x, y ∈ Z5 and z ∈ Zw, denotes the bit at position (x, y, z).
It follows that indexing starts from zero. The mapping between the bits of s and those of
a is s[w(5y + x) + z] = a[x, y, z]. Expressions in the x and y coordinates should be taken
modulo 5 and expressions in the z coordinate modulo w. We may sometimes omit the [z]
index, both the [y, z] indices or all three indices, implying that the statement is valid for
all values of the omiĴed indices.

Kђѐѐюј-p[b, nr] is an iterated permutation, consisting of a sequence of nr rounds R,
indexed with ir from 12+ 2ℓ− nr to 12+ 2ℓ− 1. Note that ir, the round number, does not
necessarily start from 0. A round consists of five steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with

θ : a[x, y, z] ← a[x, y, z] +
4

∑
y′=0

a[x− 1, y′, z] +
4

∑
y′=0

a[x + 1, y′, z− 1],

ρ : a[x, y, z] ← a[x, y, z− (t + 1)(t + 2)/2],

with t satisfying 0 ≤ t < 24 and
(

0 1
2 3

)t (1
0

)
=

(
x
y

)
in GF(5)2×2,

or t = −1 if x = y = 0,

π : a[x, y] ← a[x′, y′], with
(

x
y

)
=

(
0 1
2 3

)(
x′

y′

)
,

χ : a[x] ← a[x] + (a[x + 1] + 1)a[x + 2],
ι : a ← a + RC[ir].

The additions and multiplications between the terms are in GF(2). With the exception of
the value of the round constants RC[ir], these rounds are identical. The round constants
are given by (with the first index denoting the round number)

RC[ir][0, 0, 2j − 1] = rc[j + 7ir] for all 0 ≤ j ≤ ℓ,

and all other values of RC[ir][x, y, z] are zero. The values rc[t] ∈ GF(2) are defined as the
output of a binary linear feedback shiĞ register (LFSR):

rc[t] =
(

xt mod x8 + x6 + x5 + x4 + 1
)

mod x in GF(2)[x].

Note that the round index ir can be consideredmodulo 255, the period of the LFSR above.

3 The duplex construction

The duplex construction allows both to input and to output a data block per call to the
underlying permutation [4]. It is shown to formally reduce to the sponge construction,
although the supported functionality of both constructions differ and typically address
different applications. Besides authenticated encryption, the duplex construction finds
a number of applications, such as a reseedable pseudo-random bit sequence generators
and a sponge variant that overwrites part of the state with the input block rather than to
XOR it in.

6



3.1 Specification

The duplex construction ёѢѝљђѥ[ f , pad, r] uses a fixed-length transformation (or permuta-
tion) f , a padding rule “pad” and a parameter bitrate r [4]. Unlike a sponge function that
is stateless in between calls, the duplex construction accepts calls that take an input string
and returns an output string depending on all inputs received so far. We call an instance
of the duplex construction a duplex object, which we denote D in our descriptions. We
prefix the calls made to a specific duplex object D by its name D and a dot.

Figure 2: The duplex construction

The duplex construction works as follows. A duplex object D has a state of b bits.
Upon initialization all the bits of the state are set to zero. From then on, one can send to
it D.duplexing(σ, ℓ) calls, with σ an input string and ℓ the requested number of bits.

Algorithm 2 The duplex construction ёѢѝљђѥ[ f , pad, r]
Require: r < b
Require: ρmax(pad, r) > 0
Require: s ∈ Zb

2 (maintained across calls)

Interface: D.initialize()
s = 0b

Interface: Z = D.duplexing(σ, ℓ) with ℓ ≤ r, σ ∈ Z
≤ρmax(pad,r)
2 , and Z ∈ Zℓ

2
P = σ||pad[r](|σ|)
s = s⊕ (P||0b−r)
s = f (s)
return ⌊s⌋ℓ

Themaximumnumber of bits ℓ one can request is r and the input string σ shall be short
enough such that aĞer padding it results in a single r-bit block. We call the maximum
length of σ the maximum duplex rate and denote it by ρmax(pad, r). For the multi-rate
padding, we have

ρmax(pad10∗1, r) = r− 2.

The duplex construction is illustrated in Figure 2, and Algorithm 2 provides a formal
definition.

7



3.2 Rationale

The generic security of the duplex construction is equivalent to that of the sponge con-
struction, thanks to the Duplexing-sponge lemma [4], which we repeat here:

Lemma 1 (Duplexing-sponge lemma [4]). If we denote the input to the i-th call to a duplex
object by (σi, ℓi) and the corresponding output by Zi we have:

Zi = D.duplexing(σi, ℓi) = sponge(σ0||pad0||σ1||pad1|| . . . ||σi, ℓi)

with padi a shortcut notation for pad[r](|σi|).

The generic security of the sponge construction is in turn analyzed in the framework
of indifferentiability in [2] and, when keyed, for indistinguishability from a randomoracle
in [5].

Theorem 1 ([2]). TheRO differentiating advantage of the sponge construction calling a random
permutation is upper bound by:

1−
N−1

∏
i=0

(
1− i+1

2c

1− i
2r+c

)
≈ N2

2c+1

with N the cost of the queries, i.e., the total number of blocks queried to the sponge function, the
permutation or its inverse.

Theorem 2 ([5]). The advantage of distinguishing Ѡѝќћєђ[ f , pad, r](K||·, ℓ) from a random or-
acle, with f a random permutation and K uniformly distributed over Zk

2, is upper bounded by:

M2 + 4MN
2c+1 +

N
2k ,

where M is the data complexity (i.e., the total number of blocks queried to the keyed sponge func-
tion) and N the computational complexity (i.e., the total number of blocks queried to the permuta-
tion or its inverse).

Note that the proof of Theorem 2 is work in progress. Our current investigations tend
to confirm the above result, but wemight need to slightly refine the bound once the proof
is completed.

4 The serial authenticated encryption mode DѢѝљђѥWџюѝ

We consider authenticated encryption as a process that takes as input a header A and a
data body B and that returns a cryptogram C and a tag T. We denote this operation by
the term wrapping and the reverse operation of taking a header A, a cryptogram C and a
tag T and returning the data body B if the tag T is correct by the term unwrapping.

Similar to SѝќћєђWџюѝ, DѢѝљђѥWџюѝ supports sessions, allowing the processing of
several messages (each with associated data), where the tag for each message authen-
ticates the full sequence of messages rather than only the message to which it was ap-
pended. The requirement of nonce uniqueness plays at the level of the session. Within
a session, different messages have no explicit message number or nonce. However, they
must be processed in order for the tags to verify. An alternative way to see this concept
of session is that it supports intermediate tags.

8



In other words, the process of authenticating and encrypting works on a sequence of
header-body pairs (A, B) = (A(1), B(1), A(2), . . . , A(n), B(n)) in such a way that the authen-
ticity is guaranteed not only on each (A, B) pair but also on the sequence received so far.
The use of such a sequence and intermediate tags is illustrated in Figure 3 and further
formalized in [4, Section 2.1].

0 A(1)
1 B(1)

C(1) T(1)

A(2) B(2)

C(2) T(2)

A(3)

T(3)

Figure 3: A session in DѢѝљђѥWџюѝ

The requirements on the way DѢѝљђѥWџюѝ is used are the following. The first header
A(1) must contain the secret key and can also contain a nonce and/or associated data. For
the encryption of a body B(1) in the first wrap call, A(1) must be secret and unique. This
can be either because A(1) contains a key that has not been used already (and will never
be used again), or because A(1) contains a nonce. As for a stream cipher, not respecting
this requirement means that the adversary can learn the bitwise difference between two
plaintext bodies.

Second, the encryption of a body B(n) requires that the previously processed sequence
of header-body pairs is unique. This is also known as the nonce requirement. More for-
mally, it specifies that for any two queries (A, B) and (A′, B′) of equal length n, we have

pre(A, B) = pre(A′, B′)⇒ B(n) = B′(n),

with pre(A, B) = (A(1), B(1), A(2), . . . , B(n−1), A(n)) the sequence with the last body omit-
ted. In other words, the encryption of two different bodies requires that the blocks pre-
ceding these bodies are different as well.

Note that generating tags requires that A(1) is secret (i.e., it contains the secret key)
but not necessarily that it is unique.

We now overview the way DѢѝљђѥWџюѝ works. Like for duplex, we use an object-
oriented description. A DѢѝљђѥWџюѝ object W internally uses a duplex object D and it
is parameterized with the permutation f and the maximum block length ρ. The multi-
rate padding is fixed as the padding rule. Upon initialization of a DѢѝљђѥWџюѝ object, it
initializes D, i.e., its state is set to zero.

When receiving a W.wrap(A, B, ℓ) request, it forwards the blocks of the header A and
the body B to D. It generates the cryptogram C block by block Ci = Bi ⊕ Zi with Zi the
response of D to the previous D.duplexing() call. The ℓ-bit tag T is the response of D
to the last body block (possibly extended with the response to additional D.duplexing()
calls in case ℓ > ρ). Finally it returns the cryptogram C and the tag T.

When receiving a W.unwrap(A, C, T) request, it forwards the blocks of the header A
to D. It decrypts the data body B block by block Bi = Ci ⊕ Zi with Zi the response of
D to the previous D.duplexing() call. The response of D to the last body block (possibly
extended) is compared with the tag T received as input. If the tag is valid, it returns the
data body B; otherwise, it returns an error. Note that in implementations onemay impose
additional constraints, such as DѢѝљђѥWџюѝ objects dedicated to either only wrapping

9



or only unwrapping. Additionally, if message origin authentication is a requirement,
the application using the DѢѝљђѥWџюѝ object should not accept tags with length below a
minimum length t, otherwise it would trivially accept messages with an empty tag. As
a countermeasure against (side channel) aĴacks, an application may abort the session as
soon as it receives an incorrect tag.

Before being forwarded to D, every block is extended with so-called frame bits. The
purpose of the frame bits is twofold. First, it delimits blocks belonging to the different
headers and bodies. Second, it ensures domain separation between the production of the
key stream and of the tag blocks. The rate ρ of the DѢѝљђѥWџюѝmode determines the size
of the blocks and hence the maximum number of bits processed per call to f . Its upper
bound is r− 4 due to the inclusion of two frame bits and two padding bits per block. Note
that there are two distinct rates: the rate r of the duplex construction, which determines
the aĴainable security strength with c = b − r, and the rate ρ of DѢѝљђѥWџюѝ, which
determines the maximum length of blocks.

DѢѝљђѥWџюѝ puts no restriction in the way the input strings are cut into blocks, pro-
vided that each block is at most ρ = r− 4 bits and that the same sequence of block lengths
is given when wrapping and unwrapping. A block is thus an element of Z

≤ρ
2 . The inputs

and outputs of the wrapping and unwrapping calls are sequences of blocks, except for
the tag. The motivation for the application or mode calling DѢѝљђѥWџюѝ to control the
size of blocks is to allow that parallel lines have the same number of blocks to process in
KђѦюјLіћђѠ.

In the case where only authentication is needed, the body can be absent (no blocks)
and DѢѝљђѥWџюѝ avoids an unnecessary call to the duplex object. In all cases, however,
the header must contain at least one (possibly empty) block.

DѢѝљђѥWџюѝ provides an explicit “forget” call that processes the state in an irreversible
way so as to ensure forward secrecy. If for some reason the state is recovered by an at-
tacker, she cannot determine the state before the “forget” call without guessing at least c
bits.

4.1 Specification

DѢѝљђѥWџюѝ is defined in Algorithms 3 and 4. The process of wrapping is illustrated in
Figures 4 and 5. The “forget” call is illustrated in Figure 6.

0 d d d d

+00 +00 +10 0

Figure 4: Wrapping a header only with DѢѝљђѥWџюѝ

10



Algorithm 3Wrapping in DѢѝљђѥWџюѝ[ f , ρ].
Require: D = ёѢѝљђѥ[ f , pad10∗1, r = ρ + 4], initialized before the first (un)wrap call

Interface: (C, T) = W.wrap(A, B, ℓ) with A ∈ (Z
≤ρ
2 )+, B ∈ (Z

≤ρ
2 )∗, sequences of

blocks (B can be empty), C ∈ (Z
≤ρ
2 )∗, ℓ ≥ 0, and T ∈ Zℓ

2
for i = 0 to ∥A∥ − 2 do

D.duplexing(Ai||00, 0)
if ∥B∥ ≥ 1 then

Z = D.duplexing(A∥A∥−1||01, |B0|)
C0 = B0 ⊕ Z
for i = 0 to ∥B∥ − 2 do

Z = D.duplexing(Bi||11, |Bi+1|)
Ci+1 = Bi+1 ⊕ Z

T = D.duplexing(B∥B∥−1||10, ρ)
else

T = D.duplexing(A∥A∥−1||10, ρ)
while |T| < ℓ do

T = T||D.duplexing(0, ρ)
T = ⌊T⌋ℓ
return (C, T)

0 d d d d d d

+00 +00 +01 +11 +10 0

Figure 5: Wrapping a header and a body with DѢѝљђѥWџюѝ

4.2 Comparison with SѝќћєђWџюѝ

DѢѝљђѥWџюѝ is very similar to SѝќћєђWџюѝ [4]. The differences are the following:

1. DѢѝљђѥWџюѝ puts no restriction in the way the input strings are cut into blocks. To
reflect this in the interface, the inputs and outputs of the wrapping and unwrapping
calls are sequences of blocks, except for the tag.

2. In the case only authentication is needed, the body can be absent and DѢѝљђѥWџюѝ
avoids one call to the duplex object compared to SѝќћєђWџюѝ.

11



Algorithm 4 Unwrapping and forgeĴing in DѢѝљђѥWџюѝ[ f , ρ].
Require: D = ёѢѝљђѥ[ f , pad10∗1, r = ρ + 4], initialized before the first (un)wrap call

Interface: (B, T) = W.internalUnwrap(A, C, ℓ) with A ∈ (Z
≤ρ
2 )+, C ∈ (Z

≤ρ
2 )∗ se-

quences of blocks (C can be empty), B ∈ (Z
≤ρ
2 )∗, ℓ ≥ 0, and T ∈ Zℓ

2
for i = 0 to ∥A∥ − 2 do

D.duplexing(Ai||00, 0)
if ∥C∥ ≥ 1 then

Z = D.duplexing(A∥A∥−1||01, |C0|)
B0 = C0 ⊕ Z
for i = 0 to ∥C∥ − 2 do

Z = D.duplexing(Bi||11, |Ci+1|)
Bi+1 = Ci+1 ⊕ Z

T = D.duplexing(B∥B∥−1||10, ρ)
else

T = D.duplexing(A∥A∥−1||10, ρ)
while |T| < ℓ do

T = T||D.duplexing(0, ρ)
return (B, ⌊T⌋ℓ)

Interface: B = W.unwrap(A, C, T) with A ∈ (Z
≤ρ
2 )+, C ∈ (Z

≤ρ
2 )∗ sequences of blocks

(C can be empty), B ∈ (Z
≤ρ
2 )∗ ∪ {error}, and T ∈ Z∗2

Let (B, T′) = W.internalUnwrap(A, C, |T|)
if T = T′ then
return B

else
return error

Interface: W.forget(), requiring ρ ≥ c
Z = D.duplexing(empty string, ρ)
D.duplexing(Z, 0)

d d≈

Figure 6: ForgeĴing in DѢѝљђѥWџюѝ

12



3. For uniformity of the description, DѢѝљђѥWџюѝ does not propose a specific initial-
ization call for absorbing the key. In the first wrap (or unwrap) call, the header A(1)

must contain the secret key but can also contain a nonce and/or associated data.

4. In addition to the unwrap call, we define the W.internalUnwrap(A, C, ℓ) interface
that returns the expected tag and the ciphertext. This function will be needed in the
layer above.

5. DѢѝљђѥWџюѝ provides an explicit “forget” call that processes the state in an irre-
versible way so as to ensure forward secrecy.

6. DѢѝљђѥWџюѝ uses two frame bits per duplex call instead of one in SѝќћєђWџюѝ.

7. DѢѝљђѥWџюѝ is instantiated explicitly with the multi-rate padding. So the rate is
fixed to r = ρ + 4 so that ρ ≤ ρmax(pad10∗1, r)− 2, in order to allow for two DѢ-
ѝљђѥWџюѝ-level frame bits and two multi-rate padding bits.

4.3 Rationale

The security of DѢѝљђѥWџюѝ follows the proof in [4, Section 5.2], with Lemma 7 in that
paper replaced by Lemma 2 below.

Lemma 2. Let (A, B) be a sequence of header-body pairs, each made of sequences of blocks. Then,
the mapping from (A, B) to the corresponding sequence of inputs (σ0, σ1, . . . , σn) to the duplexing
calls in Algorithm 3 is injective.

Proof. We show that from (σ0, σ1, . . . , σn) we can always recover (A, B).
The first header A(1) can be found by looking for the first block σi that ends with frame

bits 01 or 10; the blocks of A(1) are made of the blocks σj, j ≤ i, each with their last two
bits removed.

If the last block σi endedwith 01, at least one body block follows. To find the first body
B(1), we follow the same procedure as for A(1), except that we look for the first block σi′ ,
i′ > i, that ends with 10. Otherwise, i.e., if σi ended with 10, then B(1) contains no blocks.

We then repeat the procedure, but instead of recovering A(1) and B(1), we recover A(2)

and B(2), and then A(3) and B(3), and so on.
At all times, blocks containing only the frame bit 0 are skipped, as they can only be

produced when extending the tag in line 14 of Algorithm 3. Also, every time an empty
block is encountered, this block and the next one are skipped, as they can only be pro-
duced in a “forget” call in lines 23 and 24 of Algorithm 4. ⊓⊔

Combinedwith the results of Theorem 1, and using the fact that the number of queries
is lower bounded by the number of blocks queried N, this yields the following result.

Theorem 3. The authenticated encryption mode DѢѝљђѥWџюѝ[ f , ρ] defined in Section 4 satisfies

Advpriv
DѢѝљђѥWџюѝ[ f ,ρ](A) < N2−k +

N(N + 1)
2c+1 and

Advauth
DѢѝљђѥWџюѝ[ f ,ρ](A) < N2−k +

N(N + 1)
2c+1 + 2−t,

against any single adversary A if K $←− Zk
2, tags of ℓ ≥ t bits are used, f is a randomly chosen

permutation, and N is the total number of blocks queried to DѢѝљђѥWџюѝ, to f and to its inverse.

13



Additionally, if A(1) starts with the secret key, we can use Theorem 2. Using the fact
that the number of queries is lower bounded by the number of blocks queried M, this
yields the following result. Theorem 4 provides a beĴer bound than the theorem above
by separating the queries made to the keyed duplex object under aĴack (that is, the data
complexity), from those made separately to the permutation or its inverse (that is, the
time complexity). Thanks to this theorem, we can go beyond the usual bound of 2c/2 for
the time complexity by imposing a limit to the data complexity.

Theorem 4. The authenticated encryption mode DѢѝљђѥWџюѝ[ f , ρ] defined in Section 4 satisfies

Advpriv
DѢѝљђѥWџюѝ[ f ,ρ](A) < (M + N)2−k +

M2 + 4MN
2c+1 and

Advauth
DѢѝљђѥWџюѝ[ f ,ρ](A) < (M + N)2−k +

M2 + 4MN
2c+1 + 2−t,

against any single adversary A if K $←− Zk
2, tags of ℓ ≥ t bits are used, f is a randomly chosen

permutation, M is the data complexity (i.e., the total number of blocks queried to the keyed sponge
function or duplex object) and N the time complexity (i.e., the total number of blocks queried to
permutation or its inverse).

5 KђѦюј

There are four instances of KђѦюј, parameterized by the permutation f used and by their
degree of parallelism P. In order of increasing state sizes, the instances are:

• Rіѣђџ KђѦюј, with f = Kђѐѐюј-p[800, nr = 12] and P = 1;

• Lюјђ KђѦюј, with f = Kђѐѐюј-p[1600, nr = 12] and P = 1;
(this is the primary recommendation)

• Sђю KђѦюј with f = Kђѐѐюј-p[1600, nr = 12] and P = 2; and

• Oѐђюћ KђѦюј with f = Kђѐѐюј-p[1600, nr = 12] and P = 4.

All these instances share the same capacity, namely, c = 252. They target 128-bit
security if the online data complexity is below 2123 blocks, by using Theorem 4 with M ≤
2123.

All these instances take a 128-bit public message number (or nonce), but no private
message number, and produce a 128-bit MAC, which can be truncated by the user if de-
sired. If not truncated, the gap between the ciphertext and the plaintext length is exactly
128 bits. The key size is variable, with aminimum of 128 bits for the targeted security, and
up to a maximum of 224 bits, as a possible countermeasure against multi-target aĴacks.

The serial (P = 1) instances are defined on top of DѢѝљђѥWџюѝ directly, while the
parallel (P > 1) instances are described on top of KђѦюјLіћђѠ, in turn using DѢѝљђѥWџюѝ.

5.1 Serial instances

A serial KђѦюј instance is an application of DѢѝљђѥWџюѝ parameterized by the permuta-
tion f and assumes P = 1. It uses a DѢѝљђѥWџюѝ object

W = DѢѝљђѥWџюѝ[ f , ρ],

14



with ρ = b− c− 4, where b is f ’s width.
With inputs M for the input message, AD for the associated data, N for the 128-bit

public message number and K for the key, the encryption returns the authenticated ci-
phertext C||T, with

(C, T) = W.wrap(keypack(K, 240)||enc8(1)||enc8(0)||N||AD, M, 128),

where the input strings are converted into blocks via яљќѐјѠ(·, ρ, 1) and output blocks are
converted back to strings via яљќѐјѠ−1(·, ρ, 1).

With inputs C||T for the authenticated ciphertext (with |T| = 128 by default), AD
for the associated data, N for the 128-bit public message number and K for the key, the
decryption returns the plaintext M or an error, with

M = W.unwrap(keypack(K, 240)||enc8(1)||enc8(0)||N||AD, C, T),

where the input strings are converted into blocks via яљќѐјѠ(·, ρ, 1) and output blocks are
converted back to strings via яљќѐјѠ−1(·, ρ, 1).

Further input message and associated data pairs can be processed as a session by call-
ing

(C, T) = W.wrap(AD, M, 128) or M = W.unwrap(AD, C, T)

using the same DѢѝљђѥWџюѝ object W and without the need of a new public message
number. The produced tags also cover the previously processed input message and asso-
ciated data pairs, as explained in Section 4. Optionally, forward secrecy can be ensured
by calling W.forget() between pairs.

The proposed instances are:

• Lюјђ KђѦюј is the primary recommendation. We set f = Kђѐѐюј-p[1600, nr = 12]
and c = 252 so that ρ = 1344.

• Rіѣђџ KђѦюј is a secondary recommendation, which may be of interest for its
smaller state size. We set f = Kђѐѐюј-p[800, nr = 12] and c = 252 so that ρ = 544.

5.2 The parallelizable authenticated encryption mode KђѦюјLіћђѠ

In Algorithm 5, we define a parallel application of DѢѝљђѥWџюѝ. KђѦюјLіћђѠ is parame-
terized by P, the degree of parallelism, that is, the number of DѢѝљђѥWџюѝ objects whose
bulk work can be performed independently.

KђѦюјLіћђѠ is specific to KђѦюј, as it uses specific coding to make all KђѦюј instances
consistent, including the (non-KђѦюјLіћђѠ) serial ones, i.e., the first header always starts
with

keypack(K, 240)||enc8(P)||enc8(i)||N
with 0 ≤ i ≤ P − 1, regardless whether P = 1 or P > 1. Unlike DѢѝљђѥWџюѝ, there is
an explicit initialization method, which takes a key and a nonce as input. Then, the wrap
and unwrap methods can process P parts of the associated data and then P parts of the
input message in parallel.

The input strings (associated data, plaintext or ciphertext) are cut into blocks of ρ bits
using Algorithm 1. The P sequences contain an equal number of blocks, so that each
DѢѝљђѥWџюѝ object processes the same number of blocks, and this is expected to make
the implementation easier.

For tag production, the DѢѝљђѥWџюѝ object with index 0 gathers tags produced by
the remaining P− 1 other objects as chaining value, of size 8⌈ c

8⌉ = 256 bits each, before
producing its own.

15



Algorithm 5Wrapping and unwrapping in KђѦюјLіћђѠ[ f , ρ, P].
Require: P, an integer between 2 and 255
Require: W[0 . . . P− 1], an array of P objects DѢѝљђѥWџюѝ[ f , ρ]
Interface: W.initialize(K, N) with K ∈ Z≤224

2 , N ∈ Z∗2
for i = 0 to P− 1 do

W[i].wrap(яљќѐјѠ(keypack(K, 240)||enc8(P)||enc8(i)||N, ρ, 1),no blocks, 0)

Interface: (C, T) = W.wrap(A, B, ℓ) with A, B ∈ Z∗2 , ℓ ≥ 0, C ∈ Z
|B|
2 and T ∈ Zℓ

2
Let A⋆,⋆ = яљќѐјѠ(A, ρ, P), or A⋆,⋆ is a P× 1-array of empty blocks if |A| = 0
Let B⋆,⋆ = яљќѐјѠ(B, ρ, P)
for i = 0 to P− 1 do
(Ci,⋆, T′i ) = W[i].wrap(Ai,⋆, Bi,⋆, 8⌈ c

8⌉)
T = W[0].wrap(яљќѐјѠ(T′1||T′2|| . . . ||T′P−1, ρ, 1),no blocks, ℓ)
return (яљќѐјѠ−1((C0,⋆, . . . , CP−1,⋆), ρ, P), T)

Interface: B = W.unwrap(A, C, T) with A, C, T ∈ Z∗2 , B ∈ Z
|C|
2 ∪ {error}

Let A⋆,⋆ = яљќѐјѠ(A, ρ, P), or A⋆,⋆ is a P× 1-array of empty blocks if |A| = 0
Let C⋆,⋆ = яљќѐјѠ(C, ρ, P)
for i = 0 to P− 1 do
(Bi,⋆, T′i ) = W[i].internalUnwrap(Ai,⋆, Ci,⋆, 8⌈ c

8⌉)
Let result = W[0].unwrap(яљќѐјѠ(T′1||T′2|| . . . ||T′P−1, ρ, 1),no blocks, T)
if result = success then
return яљќѐјѠ−1((B0,⋆, . . . , BP−1,⋆), ρ, P)

else
return error

Interface: W.forget()
for i = 0 to P− 1 do

W[i].forget()

16



5.3 Parallelizable instances

A parallelizable KђѦюј instance is an application of KђѦюјLіћђѠ parameterized by the per-
mutation f and the degree of parallelism P > 1. It uses a KђѦюјLіћђѠ object

W = KђѦюјLіћђѠ[ f , ρ, P],

with ρ = b− c− 4, where b is f ’s width.
With inputs M for the input message, AD for the associated data, N for the public

message number and K for the key, the encryption returns the authenticated ciphertext
C||T, starting by calling W.initialize(K, N) and then

(C, T) = W.wrap(AD, M, 128).

With inputs C||T for the authenticated ciphertext (with |T| = 128 by default), AD for
the associated data, N for the public message number and K for the key, the decryption
returns the plaintext M or an error, starting by calling W.initialize(K, N) and then

M = W.unwrap(AD, C, T).

Further input message and associated data pairs can be processed as a session by call-
ing

(C, T) = W.wrap(AD, M, 128) or M = W.unwrap(AD, C, T)

using the same KђѦюјLіћђѠ object W. Optionally, forward secrecy can be ensured by call-
ing W.forget() between pairs.

For both instances, we set f = Kђѐѐюј-p[1600, nr = 12] and c = 252 so that ρ = 1344.
The two instances differ by their degree of parallelism, namely

• Sђю KђѦюј sets P = 2 and

• Oѐђюћ KђѦюј sets P = 4.

These instances can be interesting in a number of cases, in particular for exploiting
SIMD architectures that the parallel evaluation of the Kђѐѐюј round function can benefit
from [9]. Sђю KђѦюј best exploits 128-bit SIMD, while Oѐђюћ KђѦюј best exploits 256-bit
SIMD.

5.4 Security goals

The claimed security is summarized in Table 1, where the security strength is indicated
with the logarithm base 2 of the aĴack cost and the unit is the execution of the underlying
permutation.

For the confidentiality of the plaintext, the publicmessage number N has to be anonce.
Reusing the same value of N for more than one session in general breaks the confiden-
tiality of the plaintext. It leaks the bitwise difference between the plaintext messages en-
crypted under the same M. In the case of a single, accidental, nonce reuse, the situation is
just a liĴle bit beĴer than with a stream cipher, as the leakage is limited to the first block
of ρ bits where the input messages start to differ. Due to the way DѢѝљђѥWџюѝ works, the
subsequent blocks will not lose confidentiality.

For the integrity of the plaintext and associated data, however, N is not required to be
a nonce.

Inmulti-target aĴacks against KђѦюј the resistance against exhaustive keysmay erode
from |K| to |K| − log2 n with n the number of targets. This is the case if n KђѦюј instances

17



KђѦюј
plaintext confidentiality min(128, |K|)
plaintext integrity min(128, |K|, |T|)
associated data integrity min(128, |K|, |T|)
public message number integrity min(128, |K|, |T|)

Table 1: Security claims for KђѦюј, assuming that the online data complexity is below 2123

blocks.

are loaded with different keys but the same nonce |N|, and an aĴacker has access to their
outputwhen processing the same input. Note that if an upper limit to n is known, one can
have a security strength of 128 bits by taking sufficiently long keys: |K| ≥ 128+ log2 nmax.
An option that avoids erosionwithout increasing the length of keys is to impose universal
nonce uniqueness. By this wemean that not only the combination (K, N)must be unique,
but the nonce N for each KђѦюј instance must be unique. Many use cases actually allow
this. For example, one can take as nonce the combination of the universally unique IDs
of the two communicating devices and a strictly incrementing session counter.

5.5 Rationale

In this section, we give a rationale on the security of KђѦюј. The proofs are sketched,
rather than formalized, so as to favor the clarity and simplicity of the explanation.

Our security claims for KђѦюј match the level of generic aĴacks of the chosen modes
and chosen parameters (mainly the capacity set at c = 252). This is becausewe believe that
the permutations Kђѐѐюј-p[1600, nr = 12] and Kђѐѐюј-p[800, nr = 12] are strong enough
to avoid exploitable properties, which would translate into aĴacks in the chosen modes
with a complexity lower than the generic ones. In this approach, we have two things to
look at:

1. First, we need to analyze generic aĴacks and their success probability. This usually
comes down to proving upper bounds on such probabilities.

2. Second, we need to consider the properties of the underlying permutations and
whether they are not exploitable.

Regarding the properties of the underlying permutations, we refer to [3, Chapter 8]
for examples of properties that are relevant in the scope of sponge functions, as well as
our own and all the third-party cryptanalysis of Kђѐѐюј [7]. We note in particular that
the algebraic degree of the permutation as a function of the number of rounds most likely
reaches a high enough level aĞer 12 rounds [10, 11].

The remainder of this section deals with the generic aĴacks. We start with the confi-
dentiality part and then discuss the authentication part.

5.5.1 Confidentiality

In KђѦюј, the output for key stream and tag are domain separated by the underlying
DѢѝљђѥWџюѝ object(s). It thus makes sense to discuss these two aspects separately.

With P = 1, the generic security depends directly on that of DѢѝљђѥWџюѝ. When
P > 1, we note that KђѦюјLіћђѠ uses DѢѝљђѥWџюѝ in such a way that the key streams
generated by the different lines are domain separated by the byte enc8(i). We refer to
Section 4.3 for more details.

18



5.5.2 Authentication

We base the reasoning on the fact that the tag generated as output of the wrap call in
KђѦюјLіћђѠ is formally equivalent to the application of a tree hashmode on top of a keyed
sponge function. Thanks to the duplexing-sponge lemma (Section 3.2), the tag (and the
key stream) in DѢѝљђѥWџюѝ can be seen as the output of a sponge function. Furthermore,
since the input is prefixed by a secret key, this falls in the definition of a keyed sponge
function [5]. Finally, the mode KђѦюјLіћђѠ uses P duplex objects, hence the mode equiv-
alently produces P nodes.

We first define themode T , which takes as input the parameter P and amessagem and
returns a tag T. It encompasses both the serial KђѦюј instances with P = 1 by following
the definitions in Section 5.1 and the parallelizable KђѦюј instances with P > 1 by using
KђѦюјLіћђѠ. By studying both cases at the same time, proving the soundness of T will
ensure the joint security of multiple KђѦюј instances with possibly different parameters.

We study the advantage of an adversary trying to distinguish (T [KS [ f ]], f ) from
(G[RO], f ), where KS is the keyed sponge function, f is a random permutation and
G[RO] is a system calling a random oracle aĞer mapping (P, m) ∈ N×Z∗2 to a string
s ∈ Z∗2 in an injective way so as to provide the same interface as T .

We can show that the advantage of the adversary is upper bounded by

2M2 + 4MN
2c+1 ,

with M the total cost of the queries to the first component (T [KS [ f ]] or G[RO]) and N
the number of calls made to f or its inverse. Here, the cost M is defined as the number of
blocks that T sends to the keyed sponge. For a query (P, m), this corresponds to a cost of
P⌈ |m|Pρ ⌉ plus some term proportional to P.

We follow the game hopping technique [12, 1].

• The first game is the real mode, with an ideal permutation, (T [KS [ f ]], f ). The tree
hashmode T receives q querieswith total cost M, which are transmiĴed to the keyed
sponge KS . The keyed sponge in turn calls the permutation f . The permutation f
(or its inverse) receives N direct queries, in addition to those via KS .

• The second game is the same but with the keyed sponge replaced by a random
oracle, (T [RO], f ). Using Theorem 2, moving from the first game to this second
game adds M2+4MN

2c+1 to the adversary’s advantage.

• The third and last game is the same but with the tree hash mode being replaced by
a random oracle and an injective mapping, (G[RO], f ). Assuming that T is sound,
moving from the second game to this third game adds (Pq)2

2c+1 to the adversary’s ad-
vantage, as proved in [8]. A query to the tree hash mode generates at least P nodes
of at least one block each, so we can further bound Pq ≤ M.

It remains to show that themode T is sound. We can do so by using the three sufficient
conditions of our paper [8], and we refer to it for the related concepts and terminology.

• Tree-decodability. First, there are no tree instances that are both compliant and final-
subtree-compliant with T as the number of nodes (P) is coded in a byte at a fixed
location in the final node. Then, the Adecode algorithmwouldwork as follows. Start-
ing from the final node, the value P can be decoded. Lemma 2 says that the complete
session of the DѢѝљђѥWџюѝ object with index 0 (i.e., the final node) can be recovered.

19



– If P = 1, the tree has only one node, and Adecode shall return “compliant” if it
is formaĴed as specified and “incompliant” otherwise.

– If P > 1, the last header contains the concatenation of tags from the other P− 1
DѢѝљђѥWџюѝ objects. These are chaining values in the language of [8]. The
other parts can be identified as frame bits or message pointer bits, following
the definition of KђѦюјLіћђѠ. In the child nodes, there are no such chaining
values and the frame and message pointer bits can similarly be identified. If
the P− 1 child nodes are present and correctly formaĴed, Adecode shall return
“compliant”. Otherwise, returning an expanding index amounts to pointing
to one of the missing nodes. In all cases, Adecode shall return “incompliant” if
an incorrectly formaĴed node is encountered.

• Message completeness. All input bits are used aĞer being cut by яљќѐјѠ(·, ρ, P).
Given a compliant tree instance, one can recover the input headers and bodies, then
the individual blocks as detailed in Lemma 2. Finally, the input strings can be re-
covered by following the definition of яљќѐјѠ−1 in Section 1.5.

• Final node separability. At a fixed position at the beginning of the input to the DѢ-
ѝљђѥWџюѝ objects, there is a byte enc8(i), which is i = 0 only for the final node.

6 Using KђѦюј in the context of CAESAR

In this section we explain how to use KђѦюј in the context of the CAESAR competition.

6.1 Specification and security goals

The specifications can be found in Section 5 and the security goals in Section 5.4.

6.2 Security analysis and design rationale

For the security analysis of KђѦюј and its building blocks we refer to the sections that
explain the rationale behind them: Section 5.5 for KђѦюј, Section 4.3 for DѢѝљђѥWџюѝ,
and Section 3.2 for the duplex construction.

As a generic property of sponge-based schemes, note that in a block cipher based
scheme, the block length n puts a limit of about 2n/2 before collisions occur in the input
blocks. In contrast, in sponge-based schemes, the capacity c takes the place of the block
length in this limit. In KђѦюј, the capacity is c = 252.

KђѦюј has the following security assurance features:

• Generic security of the mode.

• Security assurance from cryptanalysis of Kђѐѐюј. Note that thanks to theMatryosh-
ka property, most analysis performed onKђѐѐюј- f [1600] transfers to Kђѐѐюј- f [800].

The designers have not hidden anyweaknesses in this cipher or any of its components.
We believe this to be impossible. For Kђѐѐюј- f and its round-reduced versions, all design
choices are documented and explained in [6]. For the layers above, rationales are given
in Sections 3.2, 4.3 and 5.5.

20



6.3 Features

As a functional feature not present in most authenticated ciphers, KђѦюј supports ses-
sions. In a session, sequences of messages can be authenticated rather than a single mes-
sage. The session is initialized by loading the key and nonce and the tag for eachmessage
authenticates the complete sequence of messages preceding it. During the session, the
communicating entities have to keep state.

6.4 Intellectual property

We did not submit any patents on KђѦюј and do not intend to do so. If any of this infor-
mation changes, the submiĴers will promptly (and within at most one month) announce
these changes on the crypto-competitions mailing list.

6.5 Consent

The submiĴers hereby consent to all decisions of the CAESAR selection commiĴee re-
garding the selection or non-selection of this submission as a second-round candidate,
a third-round candidate, a finalist, a member of the final portfolio, or any other desig-
nation provided by the commiĴee. The submiĴers understand that the commiĴee will
not comment on the algorithms, except that for each selected algorithm the commiĴee
will simply cite the previously published analyses that led to the selection of the algo-
rithm. The submiĴers understand that the selection of some algorithms is not a negative
comment regarding other algorithms, and that an excellent algorithm might fail to be
selected simply because not enough analysis was available at the time of the commiĴee
decision. The submiĴers acknowledge that the commiĴee decisions reflect the collective
expert judgments of the commiĴee members and are not subject to appeal. The submit-
ters understand that if they disagree with published analyses then they are expected to
promptly and publicly respond to those analyses, not to wait for subsequent commiĴee
decisions. The submiĴers understand that this statement is required as a condition of
consideration of this submission by the CAESAR selection commiĴee.

References

[1] M. Bellare and P. Rogaway, The security of triple encryption and a framework for code-
based game-playing proofs, Advances in Cryptology – Eurocrypt 2006 (S. Vaudenay,
ed.), Lecture Notes in Computer Science, vol. 4004, Springer, 2006, pp. 409–426.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, On the indifferentiability of the
sponge construction, Advances in Cryptology – Eurocrypt 2008 (N. P. Smart, ed.), Lec-
ture Notes in Computer Science, vol. 4965, Springer, 2008, http://sponge.noekeon.
org/, pp. 181–197.

[3] , Cryptographic sponge functions, January 2011, http://sponge.noekeon.org/.

[4] ,Duplexing the sponge: single-pass authenticated encryption and other applications,
Selected Areas in Cryptography (SAC), 2011.

[5] , On the security of the keyed sponge construction, Symmetric Key Encryption
Workshop (SKEW), February 2011.

[6] , The Kђѐѐюј reference, January 2011, http://keccak.noekeon.org/.

21

http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/


[7] , The јђѐѐюј sponge function family, 2013, http://keccak.noekeon.org/.

[8] , Sufficient conditions for sound tree and sequential hashing modes, In-
ternational Journal of Information Security (2013), http://dx.doi.org/10.1007/
s10207-013-0220-y.

[9] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, Kђѐѐюј imple-
mentation overview, May 2012, http://keccak.noekeon.org/.

[10] C. Boura, A. Canteaut, and C. De Cannière,Higher-order differential properties of Keccak
and Luffa, Fast SoĞware Encryption 2011, 2011.

[11] M. Duan and X. Lai, Improved zero-sum distinguisher for full round Keccak-f permutation,
Cryptology ePrint Archive, Report 2011/023, 2011, http://eprint.iacr.org/.

[12] V. Shoup, Sequences of games: a tool for taming complexity in security proofs, IACR Cryp-
tology ePrint Archive 2004 (2004), 332.

22

http://keccak.noekeon.org/
http://dx.doi.org/10.1007/s10207-013-0220-y
http://dx.doi.org/10.1007/s10207-013-0220-y
http://keccak.noekeon.org/
http://eprint.iacr.org/

	Definitions
	Notation
	Of bits and bytes
	Padding rules
	Key pack
	Converting a string into blocks

	The Keccak-p permutations
	The duplex construction
	Specification
	Rationale

	The serial authenticated encryption mode DuplexWrap
	Specification
	Comparison with SpongeWrap
	Rationale

	Keyak
	Serial instances
	The parallelizable authenticated encryption mode KeyakLines
	Parallelizable instances
	Security goals
	Rationale

	Using Keyak in the context of CAESAR
	Specification and security goals
	Security analysis and design rationale
	Features
	Intellectual property
	Consent


