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1 Introduction

The Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) [3]
invites cryptographers to submit authenticated encryption schemes supporting associated

data (AEAD) [43], that offer advantages over AES-GCM [29, 40] and are suitable for widespread

adoption.

NORX
1
is our candidate for CAESAR. It is a novel authenticated encryption scheme with

associated data supporting an arbitrary parallelism degree, based on ARX primitives yet not

usingmodular additions. NORX has a unique parallel architecture based on themonkeyDuplex

construction [17, 20], where the parallelism degree and tag size can be tuned arbitrarily. An

original domain separation scheme allows simple processing of header/payload/trailer data.

NORX was optimized for efficiency in both software and hardware, with a SIMD-friendly

core, almost byte-aligned rotations, no secret-dependent memory lookups, and only bitwise

operations. The NORX core is inspired by the ARX primitive ChaCha [14], however it replaces

integer addition with the approximation a⊕ b⊕ (a∧ b)� 12. This simplifies cryptanalysis and
improves hardware efficiency. Furthermore, NORX specifies a dedicated datagram to facilitate

interoperability and avoid users the trouble of defining custom encoding and signalling.

Notation. Hexadecimal numbers are denoted in typewriter style, for example ab = 171. A
word is either a 32-bit or 64-bit string, which depends on the context. Unless stated otherwise
we always use little-endian representation for integers, for example when converting data

streams into word arrays. Table 1.1 summarizes the basic operations used throughout the

document.

Symbols Meaning

a ‖ b Concatenation of bitstrings a and b.
|x| Size of bitstring x in bits.

hw(x) Hamming weight of bitstring x.
¬, ∧, ∨, ⊕ Bitwise negation, AND, OR and XOR.

x � n, x � n Left-/Right-shift of bitstring x by n bits.
x ≪ n, x ≫ n Left-/Right-rotation of bitstring x by n bits.

←− Variable assignment.

Table 1.1: Operations used throughout the document.

Outline. Chapter 2 gives a complete specification of the NORX family of AEAD schemes.

Chapter 3 lists the security goals for confidentiality and integrity of the plaintext and for

integrity of associated data and public message numbers. Chapter 4 presents features

of NORX, justifies our parameter choices, and reports on performance measurements of

1
The name stems from “NO(T A)RX” and is pronounced like “norcks”.
2
Derived from the well-known identity a + b = (a⊕ b) + (a ∧ b)� 1 [11, 38].
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software implementations on 32- and 64-bit processors and presents preliminary results for
an hardware evaluation of an ASIC implementation. Chapter 5 motivates design decisions

and Chapter 6 presents preliminary results from the cryptanalysis of various aspects of

NORX. Finally, we conclude with notes on the intellectual property, a consent of the CAESAR

competition, acknowledgements, references and appendices.
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2 Specification

This section gives a complete specification of NORX and its proposed instances.

2.1 Parameters and interface

A NORX instance is parameterised by

• a word size ofW ∈ {32, 64} bits

• a number of rounds 1 ≤ R ≤ 63

• a parallelism degree 0 ≤ D ≤ 255

• a tag size |A| ≤ 10W bits, with a default of 4W bits

Encryption mode

A NORX instance in encryption mode takes as input:

• a key K of 4W bits

• a nonce N of 2W bits

• amessage M = H ‖ P ‖ T where

– H is a header
– P is a payload
– T is a trailer

and |H|, |P| and |T| are allowed to be 0

NORX encryption produces a ciphertext (or encrypted payload) C of the same size as P and an
authentication tag A.

Decryption mode

A NORX instance in decryption mode takes as input:

• a key K of 4W bits

• a nonce N of 2W bits

• a message M = H ‖ C ‖ T where

– H is a header

– C is an encrypted payload

– T is a trailer

5



and |H|, |C| and |T| are allowed to be 0

• an authentication tag A

NORX decryption either returns failure, upon failed verification of the tag, or produces a

plaintext P of the same size as C if the tag verification succeeds.

2.2 Naming conventions

A NORX instance is denoted by NORXW-R-D-|A|, whereW, R, D, and |A| are the parameters
of the instance, see §§2.1. If the default tag size is used, i.e. if |A| = 4W, the notation for
an instance is shortened to NORXW-R-D. So for example, NORX64-6-1 has (W, R, D, |A|) =
(64, 6, 1, 256).

2.3 Instances

We propose five instances of NORX, which are specified in Table 2.1.

W 64 32 64 32 64
R 4 4 6 6 4
D 1 1 1 1 4

Table 2.1: NORX instances.

All instances use the default tag size of 4W bits, i.e. 128 bit for NORX32 and 256 bit for NORX64.
Table 2.1 also reflects the priority order of the recommended parameter sets from highest at

the very left (NORX64-4-1) to lowest at the very right (NORX64-4-4). A more detailed discussion
on those parameter combinations can be found in §§4.2.

2.4 Layout overview

NORX relies on the monkeyDuplex construction [17, 20], enhanced with the capability of

parallel payload processing. The number i of parallel encryption lanes Li is controlled by

the parameter 0 ≤ D ≤ 255. For the value D = 1, the layout of NORX corresponds to a
standard (sequential) duplex construction, see Figure 2.1. For D > 1, the number of lanes Li is

bounded by the latter value, e.g. for D = 2 see Figure 2.2. If D = 0, the number of lanes Li is

bounded by the size of the payload. In that case, the layout of NORX is similar to the PPAE

construction [24].

init(K,N,D,R, |A|)

0

0

r

c
FR FR FR FR FR FR FR FR FR

01

H... HmH

01 02

P... PmPC... CmP

02 04

T... TmT

04 08

A

Figure 2.1: Layout of NORX for D = 1.
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init(K,N,D,R, |A|)

0

0

r

c
FR FR FR FR

FR FR FR

FR FR FR

FR FR FR FR

H... HmH

id0

id1

Q0,... Q0,mQ0

Q1,... Q1,mQ1

C0,... C0,mQ0

C1,... C1,mQ1

T... TmT

A

01 01 10

02

02

02 20

02 20

04 04 08

Figure 2.2: Layout of NORX for D = 2.

The core algorithm F of NORX is a permutation of b = r + c bits, where b is called the width,
r the rate (or block length), and c the capacity. We call F a round and FR

denotes its R-fold
iteration. The internal state S of NORX64 has b = 640 + 384 = 1024 bits and that of NORX32
has b = 320 + 192 = 512 bits. The state is viewed as a concatenation of 16 words, i.e.
S = s0 ‖ · · · ‖ s15, where

• s0, . . . , s9 are called the rate words (where data blocks are injected)
• s10, . . . , s15 are called the capacity words (which remain untouched).

The 16 state words are conceptually arranged in a 4× 4matrix:
s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15


2.5 The round function F

The NORX round F processes a state S by first transforming its columns with

G(s0, s4, s8, s12) G(s1, s5, s9, s13) G(s2, s6, s10, s14) G(s3, s7, s11, s15)

and then transforming its diagonals with

G(s0, s5, s10, s15) G(s1, s6, s11, s12) G(s2, s7, s8, s13) G(s3, s4, s9, s14)

Those two operations are called column step and diagonal step, as in BLAKE2 [10], and will be
denoted by col and diag, respectively. An illustration of the operations is shown in Figure 2.3.
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G

G

G

G

s0

s4

s8

s12

s1

s5

s9

s13

s2

s6

s10

s14

s3

s7

s11

s15 s12

s8

s13

s4

s9

s14

s0

s5

s10

s15

s1

s6

s11

s2

s7

s3G

G

G

G

Figure 2.3: Column step and diagonal step of F.

The permutation G transforms four words a, b, c, d by computing

a ←− (a⊕ b)⊕
(
(a ∧ b)� 1

)
d ←− (a⊕ d) ≫ r0

c ←− (c⊕ d)⊕
(
(c ∧ d)� 1

)
b ←− (b⊕ c) ≫ r1

a ←− (a⊕ b)⊕
(
(a ∧ b)� 1

)
d ←− (a⊕ d) ≫ r2

c ←− (c⊕ d)⊕
(
(c ∧ d)� 1

)
b ←− (b⊕ c) ≫ r3

The rotation offsets r0, r1, r2, r3 for 32- and 64-bit NORX are specified in Table 2.2. Moreover,
Figure 2.4 shows the G circuit.

W r0 r1 r2 r3
64 8 19 40 63
32 8 11 16 31

Table 2.2: Rotation offsets for 32- and 64-bit NORX.

2.6 Encrypting and authenticating a message

NORX encryption can process messages M of the form M = H ‖ P ‖ T, where H denotes a
header, P a payload and T a trailer. H and T are also called associated data. Each of H, P and
T are allowed to be the empty string.
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a

b

c

d

a

b

c

d

∧ ≪ 1

≫ r0

∧ ≪ 1

≫ r1

∧ ≪ 1

≫ r2

∧ ≪ 1

≫ r3

Figure 2.4: The G circuit.

2.6.1 Structure

NORX encryption and authentication consists of multiple processing phases:

1. Initialisation

2. Message processing

2.1. Header processing

2.2. Branching (only for D 6= 1)
2.3. Payload processing

2.4. Merging (only for D 6= 1)
2.5. Trailer processing

3. Tag generation

An overview of those phases is depicted in Figures 2.1 and 2.2. Processing of a message

M = H ‖ P ‖ T is done in one to five steps. The number of steps depends on whether H, T,
or P are empty or not and whether D = 1 or not. NORX skips the processing phases of empty
message parts. For example, in the simplest case when |H| = |T| = 0, |P| > 0 and D = 1,
message processing is done in one step since only the payload P needs to be encrypted and
authenticated.

Below we first describe the padding and domain separation rules, then each of the aforemen-

tioned phases.

2.6.2 Padding

NORX adopts the so-calledmulti-rate padding, which is specified in [20]. This padding rule is
defined by the map

padr : X 7−→ X ‖ 10q1

with bitstrings X and 10q1, and q = (−|X| − 2) mod r. The multi-rate padding extends X to a
multiple of the rate r and guarantees that the last block of padr(X) differs from the all-zero
block 0r

. There are three special cases:

q =


r− 2, if 0 ≡ |X| mod r
0, if r− 2 ≡ |X| mod r
r− 1, if r− 1 ≡ |X| mod r
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In the first case |X| is a multiple of the rate r and thus a full r-bit sized block 10(r−2)1 is
appended to X. This includes the case where X is the empty message, i.e. |X| = 0. The
second and third cases describe the situations where the smallest and largest number of bits

is appended to X. This corresponds to the padding block 11 of size 2 in the former and the
padding block 10(r−1)1 of size r + 1 in the latter case.

2.6.3 Domain separation

NORX performs domain separation by XORing a domain separation constant to the least
significant byte of s15 each time before the state is transformed by the permutation FR

.

Distinct constants are used for the different phases of message processing, for tag generation,

and in case of D 6= 1, for branching and merging steps. Table 2.3 gives the specification of
those constants and Figures 2.1 and 2.2 illustrate their integration into the state of NORX.

header payload trailer tag branching merging

01 02 04 08 10 20

Table 2.3: Domain separation constants.

The type of the domain separation constant used at a particular step is determined by the

type of the next processing phase. The constants are switched together with the phases. For
example, as long as the next block is from the header, the domain separation constant 01 is
applied. During the processing of the last header block, the constant is switched. If D = 1
and the next data block belongs to the payload, the new constant is 02. Then, as long as the
next block is from the payload, 02 is used, and so on.

This technique also allows NORX to skip unneeded processing phases. For example, if D = 1,
|H| > 0, |P| > 0 and |T| = 0, the constant 08 is integrated during processing of the last
payload block, which means that the trailer phase is skipped and NORX advances directly

to the generation of the authentication tag. For the extra initial and final permutations no

domain separation constants are used, which is equivalent to XORing 00 to s15. For the special

case D 6= 1 and |P| = 0 not only payload processing is skipped but also branching and
merging phases.

2.6.4 Initialisation

Initialisation processes a 4W-bit key K = k0 ‖ k1 ‖ k2 ‖ k3, a 2W-bit nonce N = n0 ‖ n1 and

the instance parameters D, R,W and |A|.

1. Basic setup: The internal state S = s0 ‖ · · · ‖ s15 is initialised as follows:
s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 ←−


u0 n0 n1 u1
k0 k1 k2 k3
u2 u3 u4 u5
u6 u7 u8 u9


where the constants u0, . . . , u3 of NORX32 (left) and NORX64 (right) respectively are
defined as follows:
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u0 = 243f6a88 u0 = 243f6a8885a308d3
u1 = 85a308d3 u1 = 13198a2e03707344
u2 = 13198a2e u2 = a4093822299f31d0
u3 = 03707344 u3 = 082efa98ec4e6c89

The other constants are computed by

(u4j+4, u4j+5, u4j+6, u4j+7) = G(u4j, u4j+1, u4j+2, u4j+3)

for j ∈ {0, 1}. A complete list of the constants is given in Table 5.2.

2. Parameter integration: The parameters D, R,W and |A| are integrated into the state
S by adding v = (R� 26)⊕ (D � 18)⊕ (W � 10)⊕ |A| to s14 followed by R iterations
of the round function F:

s14 ←− s14 ⊕ v

S ←− FR(S)

3. Finalisation: This step integrates a domain separation constant v into S, whose value
is determined according to §§2.6.3, and then updates S by FR

:

s15 ←− s15 ⊕ v

S ←− FR(S)

2.6.5 Message processing

Message processing is the main phase of NORX encryption or decryption. Unless noted

otherwise, the value of the domain separation constant v is always determined according to
§§2.6.3.

1. Header processing:

If |H| = 0, this step is skipped, otherwise H is padded to a multiple of r bits using the
multi-rate padding. Let padr(H) = H0 ‖ · · · ‖ HmH−1 denote the padded header data,

with r-bit sized header blocks Hl = hl,0 ‖ · · · ‖ hl,9 and 0 ≤ l ≤ mH − 1. Then Hl is

processed by:

sj ←− sj ⊕ hl,j, for 0 ≤ j ≤ 9

s15 ←− s15 ⊕ v

S ←− FR(S)

2. Branching: This step is only performed if D 6= 1 and |P| > 0. In that case, NORX
encrypts payload data in parallel on up to D lanes Li, with 0 ≤ i ≤ D− 1 if D > 1, or
0 ≤ i ≤ d|P| / re if D = 0. For each lane Li a copy Si = si,0 ‖ · · · ‖ si,15 of the state S is
created. The lane number i and the domain separation constant v = 02 are integrated

11



into the least significant bytes of si,13 ‖ si,14 and si,15, respectively. Finally each Si is

updated by FR
. In summary, NORX does:

Si ←− S

(si,14, si,13) ←− (si,14, si,13)⊕ (bi / 2Wc, i mod 2W)

si,15 ←− si,15 ⊕ v

Si ←− FR(Si)

3. Payload processing: If |P| = 0, payload processing is skipped. Otherwise, payload data
is padded using the multi-rate padding and then encrypted. For padding we distinguish

three cases:

• D = 1: This is the standard case, where P is padded in the obvious way, i.e.
padr(P) = P0 ‖ · · · ‖ PmP−1.

• D > 1: Here a fixed number of lanes Li is available for payload encryption, with

0 ≤ i ≤ D − 1. Let P = P0 ‖ · · · ‖ PmP−1 denote the unpadded payload, with

|Pj| = r for 0 ≤ j ≤ mP − 2, and |PmP−1| ≤ r. Those blocks are assembled in at
most D strings as

Qi = Pi ‖ PD+i ‖ P2·D+i ‖ . . .

for 0 ≤ i ≤ D − 1. That is, Qi includes blocks Pl for which l ≡ i mod D. Then
padr(Qi) = Qi,0 ‖ · · · ‖ Qi,mi−1 is assigned to lane Li for encryption.

• D = 0: In this case the number of lanes is limited by the payload size. Let
P = P0 ‖ · · · ‖ PmP−1 denote the unpadded payload data, with |Pi| = r for
0 ≤ i ≤ mP − 2, and |PmP−1| ≤ r. Then we simply assign padr(Pi) to lane Li for

encryption.

The data encryption itself works equivalently for each value of D, hence we describe it
only in a generic way.

Let padr(P) = P0 ‖ · · · ‖ PmP−1 denote the padded payload data. To encrypt a payload

block Pl = pl,0 ‖ · · · ‖ pl,9 and generate a new ciphertext block Cl = cl,0 ‖ · · · ‖ cl,9 the

following operations are executed:

sj ←− sj ⊕ pl,j, for 0 ≤ j ≤ 9

cl,j ←− sj

s15 ←− s15 ⊕ v

S ←− FR(S)

for 0 ≤ l < mP − 1. For l = mP − 1 the procedure is principally the same, but only a
truncated ciphertext block is created such that C has the same length as (unpadded) P.
In other words, bits used for padding are never written to C.

4. Merging: This step is only performed if D 6= 1 and |P| > 0. After processing of all
payload data blocks, the states Si are merged back into a single state S. Then a domain
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separation constant v is integrated, and S is updated by FR
:

S ←−
D−1⊕
i=0

Si

s15 ←− s15 ⊕ v

S ←− FR(S)

5. Trailer processing: Digestion of trailer data is done analogously to the processing of

header data as already described above. Hence, if |T| = 0, trailer processing is skipped.
If T is non-empty, let padr(T) = T0 ‖ · · · ‖ TmT−1 denote the padded trailer data with

r-bit trailer blocks Tl and 0 ≤ l ≤ mT − 1. A trailer block Tl = tl,0 ‖ · · · ‖ tl,9 is then

processed by executing the following steps:

sj ←− sj ⊕ tl,j, for 0 ≤ j ≤ 9

s15 ←− s15 ⊕ v

S ←− FR(S)

2.6.6 Tag generation

NORX generates an authentication tag A by transforming S one last time with FR
and then

extracting the |A| least significant bits from the rate words s0 ‖ · · · ‖ s9 and setting them

as A.

S ←− FR(S)

A ←−
9⊕

i=0

(si �W · i) mod 2|A|

2.7 Decrypting a ciphertext and verifying a tag

NORX decryption can process messages M of the form M = H ‖ C ‖ T, where H denotes a
header, C an encrypted payload and T a trailer. Like in encryption, associated data H and T
and payload C can be potentially empty. Decryption additionally takes a tag A as input.

2.7.1 Structure

NORX decryption and tag verification has a very similar structure to encryption:

1. Initialisation

2. Message processing

2.1. Header processing

2.2. Branching (only for D 6= 1)

2.3. Encrypted payload processing

2.4. Merging (only for D 6= 1)
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2.5. Trailer processing

3. Tag generation

4. Tag verification

2.7.2 Padding

Padding is similar to that of encryption, see §§2.6.2.

2.7.3 Domain separation

The domain separation constants and their application are the same as in encryption,

see §§2.6.3.

2.7.4 Initialisation

Initialisation is identical to that of encryption, see §§2.6.4.

2.7.5 Message processing

Message processing in decryption is similar to that in encryption, see §§2.6.5, except for the

payload processing, which is done as follows:

pl,j ←− sj ⊕ cl,j

sj ←− cl,j

s15 ←− s15 ⊕ v

S ←− FR(S)

Like in encryption as many bits are extracted and written to P as unpadded encrypted payload
bits.

2.7.6 Tag generation

Tag generation is identical to that in encryption, see §§2.6.6.

2.7.7 Tag verification

Tag verification consists of comparing the received tag A to the generated tag A′. If A = A′,
tag verification succeeds; otherwise tag verification fails, the decrypted payload is discarded

and an error is returned.

Implementations of tag verification should satisfy the following requirements:

• Tag verification should not leak information on the (relative) values of the strings com-
pared. In particular tag verification should be implemented in constant time, so that a

comparison of identical strings take the same time as a comparison of distinct strings.

• The decrypted payload should not be returned to the user if tag verification fails. Ideally,
extracted bytes should be securely erased from any temporary memory if tag verification

fails.
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2.8 Datagrams

Many issues with encryption interoperability are due to ad hoc ways to represent and transport

cryptograms and the associated data. For example IVs are sometimes prepended to the

ciphertext, sometimes appended, or sent separately. We thus specify datagrams that can be

integrated in a protocol stack, encapsulating the ciphertext as a payload. Using a standardized

encoding simplifies the transmission of NORX cryptograms across different APIs, and reduces

the risk of insecure or suboptimal encodings. We specify two distinct types of datagrams,

depending on whether the NORX parameters are fixed or need to be signaled in the datagram

header.

2.8.1 Fixed parameters

With fixed parameters shared by the parties (for example through the application using NORX),
there is no need to include the parameters in the header of the datagram1

. The datagram

for fixed parameters thus only needs to contain N, H, C, T, and A, as well as information to
parse those elements.

We encode the byte length of H and T on 16 bits, allowing for headers and trailers of up to 64
KiB, a large enough value for most real applications. The byte length of the encrypted payload

is encoded on 32 bits for NORX32 and on 64 bits for NORX64, which translates to a maximum
payload size of 4 GiB and 16 EiB, respectively2. Similarly to frame check sequences in data
link protocols, the tag is added as a trailer of the datagram specified. The header, encrypted
payload, and trailer of the underlying protocol are viewed as the payload of the datagram. The
default tag length being a constant value of the NORX instance, it needs not be signalled.

Tables 2.4 and 2.5 show the fixed-parameters datagrams for NORX32 and NORX64. The length
of the datagram header is 28 bytes for NORX64 and 16 bytes for NORX32.

Note that the CAESAR API (as per the final call, see [3]) receives the nonce and the associated

data in two separate buffers, but the tag is included in the ciphertext buffer.

2.8.2 Variable parameters

With variable parameters, the datagram needs to signal the values ofW, R, and D. The header
is thus extended to encode those values, as specified in Tables 2.6 and 2.7. To minimize

bandwidth,W is encoded on one bit, supporting the two choices 32-bit (W = 0) and 64-bit
(W = 1), R on 7 bits (with the MSB fixed at 0, i.e. supporting up to 63 rounds), and D on 8 bits
(supporting parallelization degree up to 255). The datagram header is thus only 2 bytes longer
than the header for fixed parameters.

1
The header referred to is that of the datagram specified, not that of the data processed by the NORX instance.
2
Note that NORX is capable of (safely) processing much larger data sizes, those are just the maximum values

when our proposed datagrams are used.
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Offset 0 1 2 3

0
Nonce N

4

8 Header byte length |H| Trailer byte length |T|
12 Encrypted payload byte length |C|
16

. . . Header H
??

??

. . . Encrypted payload C
??

??

. . . Trailer T
??

??

. . . Tag A
??

Table 2.4: NORX32 datagram for fixed parameters (offsets are in bytes).

Offset 0 1 2 3

0

Nonce N
4

8

12

16 Header byte length |H| Trailer byte length |T|
20

Encrypted payload byte length |C|
24

28

. . . Header H
??

??

. . . Encrypted payload C
??

??

. . . Trailer T
??

??

. . . Tag A
??

Table 2.5: NORX64 datagram for fixed parameters (offsets are in bytes).

16



Offset 0 1 2 3

0
Nonce N

4

8 Header byte length |H| Trailer byte length |T|
12 Encrypted payload byte length |C|
16 W(1)||R(7) D
20

. . . Header H
??

??

. . . Encrypted payload C
??

??

. . . Trailer T
??

??

. . . Tag A
??

Table 2.6: NORX32 datagram for variable parameters (offsets are in bytes).

Offset 0 1 2 3

0

Nonce N
4

8

12

16 Header byte length |H| Trailer byte length |T|
20

Encrypted payload byte length |C|
24

28 W(1)||R(7) D
32

. . . Header H
??

??

. . . Encrypted payload C
??

??

. . . Trailer T
??

??

. . . Tag A
??

Table 2.7: NORX64 datagram for variable parameters (offsets are in bytes).
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3 Security goals

We expect NORX with R ≥ 4 to provide the maximum security for any AEAD scheme with the
same interface (input and output types and lengths). The following requirements should be

satisfied in order to use NORX securely:

1. Unique nonces. Each key and nonce pair should not be used to process more than one

message.

2. Abort on verification failure. If the tag verification fails, only an error is returned. In

particular, the decrypted plaintext and the wrong authentication tag must not be given

as an output and should be erased from memory in a safe way.

We do not make any claim regarding attackers using “related keys”, “known keys”, “chosen

keys”, etc. We also exclude from the claims below models where information is “leaked” on

the internal state or key.

The security of NORX is limited by the key length (128 or 256 bits) and by the tag length (128 or
256 bits). Plaintext confidentiality should thus have the order of 128 or 256 bits of security. The
same level of security should hold for integrity of the plaintext or of associated data (based

on the fact that an attacker trying 2n
tags will succeed with probability 2n−256

, n < 256). In
particular, recovery of a k-bit NORX key should require resources (“computations”, energy,
etc.) comparable to those required to recover the key of an ideal k-bit key cipher. Table 3.1
summarizes the security goals of NORX.

security goal NORX32 NORX64
plaintext confidentiality 128 256
plaintext integrity 128 256
associated data integrity 128 256
public message number integrity 128 256

Table 3.1: Overview on the security levels (in bits).

Note that NORX restricts the number of messages processed with a given key: in [16] the

usage exponent e is defined as the value such that the implementation imposes an upper
limit of 2e

uses to a given key. In NORX we set it to e64 = 128 for 64-bit and e32 = 64
for 32-bit, which corresponds in both cases to the size of the nonce. NORX has capacities
of c64 = 384 (64-bit) and c32 = 192 (32-bit). As a consequence, security levels of at least
c64 − e64 − 1 = 384− 128− 1 = 255 bits for NORX64 and c32 − e32 − 1 = 192− 64− 1 = 127
bit for NORX32 are expected, see [16].
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4 Features

NORX was designed for users, provides several features desirable for practical applications

and offers a couple of advantages over AES-GCM [40]. First we list these characteristics in

detail, then give a justification of our recommended parameter sets and finally present our

performance results.

4.1 List of characteristics

• High security. NORX supports 128- and 256-bit keys and authentication tags of arbitrary
size, thanks to its duplex construction. The core permutation of NORX was designed

and evaluated to be cryptographically strong. The minimal number of 8 rounds for
initialisation / finalisation and of 4 rounds for the data processing part ensures a high
security margin against cryptanalytic attacks. Large internal states of 512 and 1024 bits
and the duplex construction offer protection against generic attacks.

• Efficiency. NORX was designed with 64-bit processors in mind, but is also compatible
with smaller architectures like 8- to 32-bit platforms. Software implementations of
NORX are able to take advantage of multi-core processors, due to the parallel duplex

construction, and specialised instruction sets like AVX / AVX2 or NEON. Moreover, state

sizes of 512 and 1024 bits make NORX very cache-friendly. Hardware implementations
benefit from hardware-friendly operations, next to the arbitrary parallelism degree for

payload processing, which results in highly competitive hardware performance of NORX.

• Simplicity. The core algorithm iterates a simple round function and can be implemented
by translating our pseudocode into the programming language used: NORX requires no

SBoxes, no Galois field operations, and no integer arithmetic; AND, XOR, and shifts are the
only instructions required. This simplifies cryptanalysis and the task of implementing

the cipher.

• High key agility. NORX requires no key expansion when setting up a new key, in
contrast to many block-cipher based schemes, like AES-GCM. Switching the secret key is

therefore very cheap. As an additional benefit, there are also no hidden costs of loading

precomputed expanded keys from DRAM into L1 cache.

• Adjustable tag sizes. The NORX family allows tag sizes of up to 10W bits, with a default

of 4W bits for our proposed instances. Thanks to the duplex construction, tag sizes can

be easily adapted to the demands of any given application.

• Simple integration. NORX can be easily integrated into a protocol stack, as it supports
flexible processing of arbitrary datagrams: any header and trailer are authenticated

(and left in clear) and the payload is both encrypted and authenticated.

• Interoperability. Dedicated datagrams encode parameters of the cipher and encapsu-

late the protected data. This aims to increase interoperability across implementations.
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• Single pass. Encryption and decryption of data is done in a single pass of the algorithm.

• Online. NORX supports encryption of data streams, i.e. the size of processed data
needs not to be known in advance.

• High data processing volume. NORX allows to process very large data sizes from a
single key-nonce pair. The usage exponent (see §§ 3) theoretically limits the number

of calls to the core permutation to values of 264
(NORX32) and 2128

(NORX64). This
translates to data sizes, which are orders of magnitude beyond everything relevant

for current real-world applications. Especially, these values are a lot higher than the

maximum of 232
calls to the authenticated encryption function of AES-GCM, which could

be easily reached already nowadays in practical applications.

• Minimal overhead. Payload encryption is non-expanding, i.e. the ciphertext has the
same length as the plaintext. The authentication tag, has a length of 16 or 32 bytes
depending on the concrete instance of NORX.

• Robustness against timing attacks. By avoiding data-dependent table look-ups, like
SBoxes, and integer additions, the goal to harden soft- and hardware implementations

of NORX against timing attacks should be comparably easy to achieve.

• Moderate misuse resistance. NORX retains its security on nonce reuse as long as
it can be guaranteed that header data is unique

1
. For comparison, nonce reuse in

AES-GCM is a major security issue, allowing an attacker to recover the secret key [34].

• Autonomy. NORX requires no external primitive.

• Diversity. The cipher does not depend on AES instructions, thereby adding to the
diversity among cryptographic algorithms.

4.2 Recommended parameter sets

We consider NORX32-4-1 and NORX64-4-1 as the standard instances for the respective word
sizes of 32 and 64 bit. These configurations offer a good balance between performance and
security. We recommend NORX32-4-1 for low resource applications on 8- to 32-bit platforms
and NORX64-4-1 for software implementations on modern 64-bit CPUs or standard hardware
implementations. Applications that require a higher security margin and where performance

has less priority are advised to use the instances NORX32-6-1 and NORX64-6-1.

For use cases where very high data throughput is necessary, we recommend NORX64-4-4,
which allows payload encryption on four parallel lanes, thus enabling very high data processing

speeds. Finally, we advise hardware implementers not to realise multiple instances of NORX

with different parameter combinations at the same time. This holds especially for different

values of the parallelism degree D. An implementation should rather be optimised for one
set of parameters to gain higher efficiency.

1
Nevertheless, the designers discourage this approach, and recommend that nonce freshness should be

ensured by all means.
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4.3 Performance

NORX was designed to perform well across both software and hardware. This section details

our implementations and performance results.

4.3.1 Generalities

In this part we analyse some general performance-relevant properties of NORX, like number

of operations in G and FR
, parallelism degree, and upper bounds for the speed of NORX on

different platforms.

Number of operations

Table 4.1 shows the number of operations required for the NORX core functions. We omit the

overhead of initialisation, integration of parameters, domain separation constants, padding

messages, and so on, as those costs are negligible compared to that of the core permutation

FR
.

function #XOR #AND #shifts #rotations total

G 12 4 4 4 24
F 96 32 32 32 192
F4 384 128 128 128 768
F6 576 192 192 192 1152
F8 768 256 256 256 1536
F12 1152 384 384 384 2304

Table 4.1: Overview on the number of operations of the NORX functions.

Memory

NORX32 and NORX64 require at least 16 and 32 bytes to be stored in ROM for the initialisation
constants

2
. To store all initialisation constants 40 and 80 bytes of ROM are necessary.

Processing a message in NORX requires enough RAM to store the internal state, i.e., 64 bytes
in NORX32 and 128 bytes in NORX64. The data being processed need not be in memory for
more than 1 byte at a time. In practice, however, it is preferable to process blocks of 40 (resp.
80) bytes at a time.

Parallelism

NORX’s core permutation F has a natural parallelism of 4 independent G applications. Ad-
ditionally, NORX allows for greater parallelism levels using multiple lanes. Using the D = 0
mode (cf. §§2.6.5), the internal parallelism level of NORX is effectively unbounded for long

enough messages.

2
The 10 constants can be generated on the fly from the four basic constants u0, . . . , u3, see §§2.6.4.
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4.3.2 Software

NORX is easily implemented for 32-bit and 64-bit processors, as it works on 32- and 64-bit
words and uses only word-based operations (XOR, AND, shifts and rotations). The specification
can directly be translated to code and requires no specific technique such as look-up tables

or bitslicing. The core of NORX essentially consists of repeated usage of the G function, which
allows simple and compact implementations (e.g., by having only one copy of the G code).

Furthermore, constant-time implementations of NORX are straightforward to write, due to

the absence of secret-dependent instructions or branchings.

Bit interleaving

While NORX’s lack of integer addition avoids dealing with carry chains, the implementer

may still have to perform full-word rotations and shifts in words wider than the natural CPU

word size. In 8-bit processors, some of this burden is alleviated by 2 out of 4 rotations being
multiples of 8. However, this is only a half-measure.

Instead, the implementer can employ the bit interleaving technique presented in [21]. This
technique consists of splitting an n-bit word w into s = n/m m-bit words bi, with bij = wi+jn/m.

A rotation by r in this representation can be performed by rotating each bi by br/wc + 1
if i + r mod m < r, br/wc otherwise, and moving bi to bi+r mod m. Rotations by 1 or n − 1
are particularly attractive, since they result in a single m-bit rotation. For example, consider
implementing NORX64 on a 32-bit CPU. Each state word w will be split into the 2 words b0 and

b1. To rotate by r:

• If r mod 2 = 0, rotate both b0 and b1 by br/2c;
• If r mod 2 = 1, rotate b1 by br/2c+ 1, b0 by br/2c, and swap them.

Conversion between representations can be performed in logarithmic time using bit “zip” and

“unzip” operations [6].

Avoiding latency

One drawback of G is that it has little instruction parallelism. In architectures where one is
limited by the latency of the G function, an implementer can trade a few extra instructions by
reduced latency:

t0 ←− a⊕ b
t1 ←− a ∧ b
t1 ←− t1 � 1
a ←− t0 ⊕ t1

d ←− d⊕ t0

d ←− d⊕ t1

d ←− d ≫ r0

This tweak saves up to 1 cycle per instruction sequence, of which there are 4 per G, at the
cost of 1 extra instruction (cf. Figure 4.1). In a sufficiently parallel architecture, this can save

22



at least 4× 2× R cycles, which translates to 6.4R/W cycles per byte saved overall. In our

measurements, this translated to a performance improvement of NORX from 0.4 to 0.7 cycles
per byte, depending on the target architecture, word size, and number of rounds.

a

b

d

∧ ≪ 1

≫ 8

a

d

(a) Naïve implementation of the G instruction sequence.

a

b

d

∧ ≪ 1

≫ 8

a

d

(b) Latency-oriented version of the G instruction sequence.

Figure 4.1: Improving the latency of G.

Vectorization

NORX lends itself quite well to implementations taking advantage of SIMD extensions present

in modern processors, such as AVX or NEON.

The typical vectorized implementation of NORX, when D = 1, works in full rows of the 4× 4
state, and computes whole column and diagonal steps of F in parallel.

Results

We wrote portable C reference implementations for both NORX64 and NORX32, as well as
optimized versions for CPUs supporting AVX and AVX2 and for NEON-enabled ARMs. Table 4.2

shows speed measurements on various platforms for messages with varying lengths. The

listed CPU frequencies are nominal ones, i.e. without dynamic overclocking features like Turbo

Boost, which improves the accuracy of measurements. Furthermore we listed only those

platform-compiler combinations that achieved the highest speeds. Unless stated otherwise

we used the compiler flags

-O3 -march=native -std=c89 -Wall -pedantic -Wno-long-long

The top speed of NORX (for D = 1), in terms of bytes per second, was achieved by an AVX2
implementation of NORX64-4-1 on a Haswell CPU, listed in Table 4.2. It achieves a throughput
of about 1.39GiBps (2.51 cycles per byte at 3.5GHz). The overhead for short messages (≤ 64
bytes) is mainly due to the additional initialisation and finalisation rounds (see Figure 2.1).
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However the cost per byte quickly decreases, and stabilizes for messages larger than about

1KiB.

Note that the speed between reference and optimized implementations differs by a factor of

less than 2, suggesting that straightforward and portable implementations will provide suffi-
cient performance in most applications. Such consistent performance reduces development

costs and improves interoperability.

data length [byte] long 4096 1536 576 64 8

Samsung Exynos 4412 Prime (Cortex-A9) at 1.7GHz

NORX32-6-1
Ref 31.56 32.35 35.45 42.14 128.66 794.12

NEON 15.66 16.70 18.36 22.79 77.78 541.00

NORX32-4-1
Ref 21.57 22.86 24.94 30.50 97.94 663.75

NEON 10.57 11.41 12.77 16.40 61.73 434.88

Intel Core i7-2630QM at 2.0 GHz

NORX64-6-1
Ref 7.69 8.14 9.08 11.54 37.75 304.00

AVX 4.94 5.24 5.90 7.52 24.81 198.00

NORX64-4-1
Ref 5.28 5.59 6.24 7.94 26.00 208.00

AVX 3.28 3.49 3.91 5.03 16.69 133.50

Intel Core i7-3667U at 2.0 GHz

NORX64-6-1
Ref 7.04 7.46 8.32 10.59 34.87 371.50

AVX 5.04 5.37 6.03 7.71 25.44 276.00

NORX64-4-1
Ref 4.92 5, 24 5.86 7.43 24.93 310.00

AVX 3.37 3.59 4.01 5.16 17.18 218.00

Intel Core i7-4770K at 3.5 GHz

NORX64-6-1
Ref 6.63 7.00 7.77 9.85 156.61 1248.00

AVX2 3.73 3.98 4.47 5.71 93.23 748.24

NORX64-4-1
Ref 4.50 4.76 5.27 6.71 106.94 853.12

AVX2 2.51 2.66 3.01 3.83 63.38 509.51

Table 4.2: Software performance of NORX in cycles per byte.

4.3.3 Hardware

Hardware architectures of NORX are efficient and easy to design from the specification: vertical

and parallel folding are naturally derived from the iterated and parallel structure of NORX.

The cipher benefits from the hardware-friendliness of the function G, which requires only
bitwise logical AND, XOR, and bit shifts, and the iterated usage of G inside the core permutation
of NORX.

A hardware architecture was designed, supporting parametersW ∈ {32, 64}, R ∈ {2, . . . , 16}
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and D = 1. It was synthesized with the Synopsys Design Compiler for an ASIC using 180nm
UMC technology. The implementation was targeted at high data throughput. The require-

ments in area amounted to about 62 kGE. Simulations for NORX64-4-1 report a throughput of
about 10Gbps (1.2GiBps), at a frequency of 125MHz.

A more thorough evaluation of all hardware aspects of NORX is planned for the future. Due

to the similarity of NORX to ChaCha and the fact that NORX has only little overhead compared

to a blank stream cipher, we expect results similar to those of Chacha as presented in [33].
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5 Design rationale

In this chapter we motivate the design choices made in NORX. We pursue a top-down ap-

proach, starting with the general layout and going into the details of the cipher’s components

in the later sections.

5.1 The parallel duplex construction

The layout of NORX is based on the monkeyDuplex construction [17, 20], but enhanced by the

capability of parallel payload processing on multiple lanes (cf. Figures 2.1 and 2.2). The parallel
duplex construction is similar to the tree-hashing mode for sponge functions [18]. It allows
NORX to take advantage of multi-core processors and enables high-throughput hardware

implementations. Associated data can be authenticated as header and/or trailer data but

only on a single lane. We felt that it is not worth the effort to enable processing of H and T in
parallel, as they are usually rather short. The number of encryption lanes is controlled by the

parallelism degree 0 ≤ D ≤ 255, which is a fixed instance parameter. Hence two instances
with distinct D values cannot decrypt data from each other. Obviously the same holds for
differingW and R values.

To ensure that the payload blocks on parallel lanes are encrypted with distinct key streams,

we use the branching phase to include an id into each of the parallel lanes. For NORX the id is

a simple counter. Once the parallel payload processing is finished, the states are re-combined

in the merging phase and NORX advances to the processing of the trailer (if present) or

generation of the authentication tag.

There does not exist a formal proof of security for the parallel duplex construction yet. Note

that the most problematic step could be the merging phase for D 6= 1, due to the fact that
(multi-)collisions could occur. However, we expect that the construction is safe in case of a

nonce-respecting adversary. We will try to hand in the proof at a later point of time.

5.2 The G function

The G function of NORX is inspired by the quarter-round function of the stream cipher
ChaCha [14], which itself is an advancement of the quarter-round function of the eSTREAM

finalist Salsa20 [1, 15]. Variants of ChaCha’s quarter-round function can be found for example

in the SHA-3 finalist BLAKE [2, 9] and its successor BLAKE2 [10].

Overview

One of the main goals for NORX was to design a core primitive, which does not rely on integer

addition to introduce non-linearity. Instead it should use exclusively more hardware-friendly

bitwise logic operations like NOT, AND, OR, or XOR and bit-shifts. Figure 5.1 shows how the G
function of NORX transforms an input (a, b, c, d) compared to the quarter-round function of
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ChaCha . The rotation offsets for NORX are specified in Table 2.2. The offsets of ChaCha are

(s0, s1, s2, s3) = (16, 12, 8, 7) for 32-bit and (s0, s1, s2, s3) = (32, 24, 16, 63) for 64-bit.1

a ←− (a⊕ b)⊕
(
(a ∧ b)� 1

)
a ←− a + b

d ←− (a⊕ d) ≫ r0 d ←− (a⊕ d) ≫ s0

c ←− (c⊕ d)⊕
(
(c ∧ d)� 1

)
c ←− c + d

b ←− (b⊕ c) ≫ r1 b ←− (b⊕ c) ≫ s1

a ←− (a⊕ b)⊕
(
(a ∧ b)� 1

)
a ←− a + b

d ←− (a⊕ d) ≫ r2 d ←− (a⊕ d) ≫ s2

c ←− (c⊕ d)⊕
(
(c ∧ d)� 1

)
c ←− c + d

b ←− (b⊕ c) ≫ r3 b ←− (b⊕ c) ≫ s3

Figure 5.1: Comparison of NORX (left) and ChaCha (right) core functions.

In NORX the integer additions is replaced by the following expression

x ←− (x⊕ y)⊕
(
(x ∧ y)� 1

)
which uses bitwise logical AND to introduce non-linearity. It mimics integer addition of two bit
strings x and y with a 1-bit carry propagation and thus provides, in addition to non-linearity,
also a slight diffusion of bits. In conformity with the main design principle of NORX, we tried

to make the non-linear operation as simple as possible in order to simplify cryptanalysis and

to reduce the risk of overlooking potential security weaknesses.

Bijectivity

The only expression in G which is not obviously invertible at a first glance, is the non-linear
operation

z = (x⊕ y)⊕ ((x ∧ y)� 1)

with n-bit words x, y and z. In order to proof bijectivity of the above expression we show
how to invert it, under the assumption that one of its inputs is fixed. Therefore we write

x = ∑n−1
i=0 xi · 2i

, y = ∑n−1
i=0 yi · 2i

and z = ∑n−1
i=0 zi · 2i

with xi, yi and zi ∈ {0, 1} and assume that
y is fixed. Writing down the inverse non-linear operation at bit level is then straightforward:

x0 = (z0 ⊕ y0)

x1 = (z1 ⊕ y1)⊕ (x0 ∧ y0)

.

.

.

xi = (zi ⊕ yi)⊕ (xi−1 ∧ yi−1)

.

.

.

xn−1 = (zn−1 ⊕ yn−1)⊕ (xn−2 ∧ yn−2)

1
The original ChaCha stream cipher is defined for 32-bit words. For the 64-bit version we used the rotation

offsets (32, 24, 16, 63) from the BLAKE2 specification [10].
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This proves that G is indeed a permutation. Further, it is a permutation when either of its
input arguments is fixed, making it also a latin square.

Features

The only operations required to define G are bitwise XOR, AND and logical bit shifts, which
has several advantages: All of the mentioned instructions can be implemented in constant

time regardless of the word size. Especially for hardware implementations there are no

carry-propagations to worry about, for example, as there would be for integer addition

mod 2n
.

Moreover no table-lookup instructions, like SBoxes, are required, where the table index is

data-dependent. Those operations, if not handled with extreme care, are often the reason for

implementations leaking side-channel information, making the affected algorithm vulnerable,

e.g., to timing-attacks [12]. By avoiding them, the task of hardening the cipher against side-

channel attacks gets obviously much easier. No specialised implementations are required,

e.g., bit-sliced SBoxes [4, 28], for table-lookups in constant time. Additionally, the waiving of

more sophisticated instructions like integer addition, multiplication, Galois field arithmetic or

other constructs based on linear algebra, has the effect that the algorithm is much easier to

implement (both in soft- and hardware) and thus reduces the threat of introducing unwanted

bugs.

5.3 The F function

The layout of the round function F of NORX is the same as used in ChaCha [14].

Overview

Recall that F transforms a state S = s0 ‖ · · · ‖ s15 in two phases. First a column step is applied

G(s0, s4, s8, s12) G(s1, s5, s9, s13) G(s2, s6, s10, s14) G(s3, s7, s11, s15)

followed by a diagonal step

G(s0, s5, s10, s15) G(s1, s6, s11, s12) G(s2, s7, s8, s13) G(s3, s4, s9, s14)

Bijectivity

As G is a permutation, F is obviously a permutation, too. This means that there exist no states
S and S′, with S 6= S′, which produce the same result, i.e. FR(S) = FR(S′), after any number
of rounds R. This characteristic of F is important for the duplex construction [20, 17] in order
to retain some desirable security properties.

Features

One great advantage of the ChaCha-related layout of F is, that the modification of a single bit
in the input has the chance of affecting all 16 output words

2
after only one application of F.

This features greatly enhances diffusion. Another benefit of the layout is the ability to execute

the four applications of G in a step completely in parallel, which improves performance.

2
In fact we found for NORX only one case where less than 16 words are affected. This can be achieved through

the modification of three very specific bits in the input. See chapter §§6 on cryptanalysis for more details.
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5.4 Selection of rotation offsets

The rotation offsets (r0, r1, r2, r3) used by NORX provide a good balance between security and
efficiency. The values ri, with 0 ≤ i ≤ 3, were selected according to the following conditions:

1. At least two out of four offsets are multiples of 8.

2. The remaining offsets are odd and have the form 8n± 1 or 8n± 3, with a preference for
the first shape.

The motivation behind those criteria has the following reasons: An offset which is a multiple of

8 preserves byte alignment and thus is much faster than an unaligned rotation on many non-
64-bit architectures. Many 8-bit microcontrollers have only 1-bit shifts of bytes, so for example
rotations by 5 bits are particularly expensive. Using aligned rotations, i.e. permutations of
bytes, greatly increases the performance of the entire algorithm. Even 64-bit architectures
benefit from such aligned rotations, for example when an instruction sequence of two shifts

followed by XOR can be replaced by SSSE3’s byte shuffling instruction pshufb. Odd offsets
break up the byte structure and therefore increase diffusion.

In order to find good rotation offsets and assess their diffusion properties, we used an

automated search combined with a diffusion test. Therefore let R denote a round number
and let L and LR be lists. For each offset tuple (r0, r1, r2, r3) with ri ∈ {1, . . . , W − 1} satisfying
the above criteria, the following steps are repeated 106

times, after the offsets have been

plugged into G:

1. Choose two b-bit sized states S and S′ uniformly at random, such that hw(S⊕ S′) = 1.

2. Compute X = FR(S)⊕ FR(S′), where F denotes the round function of NORX.

3. Save hw(X) to LR.

After the above loop is finished the test computes minimum, maximum, average and median

values of the elements of LR, saves the latter together with the offsets to L and resets LR.

Then it proceeds to the analysis of the next rotation tuple. This test is repeated until all

candidate offsets have been processed.

Finally, we chose the offsets (8, 19, 40, 63) for NORX64 and (8, 11, 16, 31) for NORX32, which
belonged to those having very high values for average and median Hamming weight for R = 1,
achieve full diffusion after R = 2, and additionally offer good performance.

Table 5.1 lists the results of the test for 32- and 64-bit core functions with R ≤ 4 and rotation
offsets as specified above. The test results show that the diffusion speed of NORX’s round

function F is almost as high as ChaCha’s and that full diffusion is reached after two rounds.
Figure 5.2 shows how single bit changes in the word s0 propagate through the NORX state over

the course of 5 steps (= F2.5
). Unfortunately there seems to be no combination of rotation

values with 3 offsets being a multiple of 8 and one beingW − 1, like BLAKE2’s (32, 24, 16, 63),
where F achieves a comparably strong diffusion as illustrated in Table 5.1. The reason for
this can be traced back to the replacement of integer addition by the non-linear operation of

NORX.
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NORX32 ChaCha (32-bit)
R min max avg median min max avg median

1 83 280 179.222 181 73 294 182.195 185
2 194 307 256.024 256 199 312 255.999 256
3 198 312 255.995 256 204 313 255.988 256
4 201 307 255.996 256 200 314 255.989 256

NORX64 ChaCha (64-bit)
R min max avg median min max avg median

1 95 429 230.136 222 73 506 248.843 246
2 440 589 511.982 512 430 591 512.013 512
3 434 589 512.008 512 439 589 511.971 512
4 428 589 511.986 512 435 585 512.008 512

Table 5.1: Diffusion statistics for NORX and ChaCha round functions.

0. Initialisation 3. Column Step

1. Column Step 4. Diagonal Step

2. Diagonal Step 5. Column Step

NORX32 Diffusion 0. Initialisation 3. Column Step

1. Column Step 4. Diagonal Step

2. Diagonal Step 5. Column Step

NORX64 Diffusion

Figure 5.2: Visualisation of NORX diffusion.

5.5 Number of rounds

For a higher protection of the key and authentication tag, e.g. against differential cryptanalysis,

we chose twice the number of rounds for initialisation and finalisation, compared to the data

processing phases. This measure was already proposed in [17] and has only minor effects

on the overall performance, but greatly increases the security of NORX. The minimal value of

R = 4 is based on the following observations:

1. The best attacks on Salsa20 and ChaCha [8, 45, 47] break 8 and 7 rounds, respectively,
which roughly corresponds to 4 and 3.5 rounds of the NORX core. However this is within
a much stronger attack model than that provided by the duplex construction of NORX.

2. The preliminary cryptanalysis of NORX as presented in Section 6. The best differentials

we were able to find, belong to a class of high-probability truncated differentials over

1.5 rounds and a class of impossible differentials over 3.5 rounds. Despite the fact that
those differentials cannot be used to mount an attack on NORX, it might be possible to
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find similar differentials, using more advanced cryptanalytic techniques, which could be

used for an attack.

The number of rounds may be adjusted according to the future cryptanalytic results on NORX.

5.6 Selection of constants

Initialisation constants

The four basic constants u0, . . . , u3 of 32-bit and 64-bit NORX correspond to the first digits of
π. The other six constants are derived iteratively from u0, . . . , u3 by

(u4j+4, u4j+5, u4j+6, u4j+7) = G(u4j, u4j+1, u4j+2, u4j+3)

for j ∈ {0, 1}. The complete list of constants is depicted in Table 5.2. The main purpose of the
constants is to bring asymmetry during initialisation and to limit the freedom of an attacker

where he might inject differences.

NORX32 NORX64 NORX32 NORX64
u0 243F6A88 243F6A8885A308D3 u5 38531D48 670A134EE52D7FA6
u1 85A308D3 13198A2E03707344 u6 839C6E83 C4316D80CD967541
u2 13198A2E A4093822299F31D0 u7 F97A3AE5 D21DFBF8B630B762
u3 03707344 082EFA98EC4E6C89 u8 8C91D88C 375A18D261E7F892
u4 254F537A AE8858DC339325A1 u9 11EAFB59 343D1F187D92285B

Table 5.2: Initialisation constants of NORX.

Domain separation constants

The NORX algorithm is separated into different data processing phases. Each phase uses its

own domain separation constant to mark the end of certain events like the absorbing of data

blocks or merging and branching steps in case of an instance with parallelism degree D 6= 1.
A domain separation constant is always added to the least significant byte of the capacity

word s15. The constants are given in Table 2.3. The separation of the processing phase is

important for the security proofs of the indifferentiability of the duplex construction [19, 20].

In addition they help to break the self-similarity of the round function and thus increase the

complexity of certain kind of attacks on NORX, for example, like slide attacks, see §§6.3.2.

5.7 The padding rule

The sponge (or duplex) construction offers protection against generic attacks if the padding

rule is sponge-compliant, i.e. if it is injective and ensures that the last block is different

from the all-zero block. In [18] it has been proven that the multi-rate padding satisfies those

properties. Moreover it is simple to describe, easy to implement and very efficient. Thus it

was a natural choice to be used in NORX. Additionally, the multi-rate padding increases the

complexity to mount certain kind of attacks on NORX, like slide attacks, see §§6.3.2.
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5.8 Absence of backdoors

We, the designers of NORX, faithfully declare that we have not inserted any hidden weaknesses

in this cipher.
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6 Security analysis

This chapter presents preliminary cryptanalysis of NORX.

6.1 Differential cryptanalysis

Differential attacks cover all attacks that exploit non-ideal propagation of differences in

a cryptographic algorithm (or of its components). Differential cryptanalysis is one of the

standard tools in the repertoire of every cryptanalyst and usually a lot of attacks on a cipher

are at least partially differential. It is thus crucial to analyse the resistance of new designs to

differential attacks.

First we introduce some of the required notations, then we analyse the propagation of

differences through the G function, show how to construct high-probability truncated differ-
entials of low weight for the core permutation FR

and finally study impossible differential

cryptanalysis.

6.1.1 Notation

Definition 1. Let x and x′ be n-bit strings. We call α = x⊕ x′ the difference of x and x′ with
respect to bitwise XOR. Furthermore for tuples of n-bit strings (x0, . . . , xm−1) and (x′0, . . . , x′m−1)
we call the component-wise difference

(α0, . . . , αm−1) = (x0, . . . , xm−1)⊕ (x′0, . . . , x′m−1) = (x0 ⊕ x′0, . . . , xm−1 ⊕ x′m−1)

a tuple of differences.
Definition 2. An n-bit difference α with hw(α) = m and 1-entries at bit positions 0 ≤ i0 ≤
· · · ≤ im ≤ n− 1 is denoted by α[i0, . . . , im].

Definition 3. Let f : {0, 1}m·n −→ {0, 1}k·n, f (a0, . . . , am−1) = (b0, . . . , bk−1) be a boolean
function. Let α := (α0, . . . , αm−1) = (x0, . . . , xm−1)⊕ (x0, . . . , xm−1) and let β := (β0, . . . , βk−1) =
f (x0, . . . , xm−1)⊕ f (x′0, . . . , x′m−1) be tuples of differences. Then we call (α, β) a differential
with respect to the function f and denote it by

α
f−→ β

If the context is clear we skip the f above the arrow and just write α −→ β. Furthermore, we

call α an input difference and β an output difference of f .

In our later analysis of NORX we usually consider functions f having k = 1 or k = m.

Definition 4. Let f0, . . . , fl−1 be boolean functions defined by

fi : {0, 1}m·n −→ {0, 1}m·n, fi(a0, . . . , am−1) = (b0, . . . , bm−1)
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for i ∈ {0, . . . , l − 1}. Further let α0 := (α0
0, . . . , α0

m−1), . . . , αl := (αl
0, . . . , αl

m−1) be tuples of
differences such that

αi fi−→ αi+1

Then we call (α0, . . . , αl) a differential characteristic with respect to the functions f0, . . . , fl−1
and denote it by

α0 f0−→ . . .
fi−1−→ αi fi−→ . . .

fl−→ αl

The tuples αj
with j ∈ {1, . . . , l − 1} are also called internal differences. In the case where

f := f0 = · · · = fl−1 we also say that (α
0, . . . , αl) is a differential characteristic with respect to

the iterated function f .

The notion of a differential characteristic can obviously be defined for arbitrary boolean

functions fi, but it is not required at this point. Thus, for reasons of simplicity, we decided to

define it only for the special case, where the dimension of the domain equals the dimension

of the codomain of fi.

Definition 5. Every differential (α, β) of a function f has a probability p ∈ [0, 1] associated to
it, which will be written as

Pr(α
f−→ β) = p

To capture all those informations in a compact form, we denote a differential (α, β) of proba-
bility p with respect to a function f by:

α
f−→
p

β

We use the commonly accepted assumption that the probability of a differential is equal to

the sum of probabilities of all differential characteristics corresponding to this differential.

Moreover it is commonly assumed that the probability of the best differential can accurately

be estimated by the probability of the best differential characteristic.

6.1.2 Differential properties of G

In this section we analyse how n-bit input differences α with hw(α) = 1 propagate through G
and present the probabilities of the resulting output differences. Therefore, we decompose G
into two functions G1 and G2 and initially analyse the behaviour of G1.

Definition 6. Let G1 : {0, 1}4n −→ {0, 1}4n
be defined as

a ←− (a⊕ b)⊕ ((a ∧ b)� 1)
d ←− (a⊕ d) ≫ r0

c ←− (c⊕ d)⊕ ((c ∧ d)� 1)
b ←− (b⊕ c) ≫ r1

The function G2 is defined analogously to G1 but with rotation offsets r2 and r3, instead of r0
and r1. Thus, we obviously have G(a, b, c, d) = G2(G1(a, b, c, d)).

34



Let (x0, x1, x2, x3) and (x′0, x′1, x′2, x′3) be two tuples of n-bit strings having difference

(α0, α1, α2, α3) = (x0, x1, x2, x3)⊕ (x′0, x′1, x′2, x′3)

and let

(β0, β1, β2, β3) = G1(x0, x1, x2, x3)⊕ G1(x′0, x′1, x′2, x′3)

Further assume that hw(av) = 1 for a fixed v ∈ {0, . . . , 3} where the 1-entry is a bit position i
and hw(au) = 0 for all u ∈ {0, . . . , 3} \ {v}. Then we get differentials

(α0, α1, α2, α3)
G1−→ (β0, β1, β2, β3)

and associated probabilities as presented in Table 6.1. Note that the output difference βw, for

w ∈ {0, . . . , 3} is the XOR sum of the 1-bit differences βw[j] in a given column. The resulting
βw[j] do not hold for arbitrary αv[i] with i ∈ {0, . . . , n − 1}. For example if i = n − 1 the
difference αv[i] will be erased by the shift operation αv[i]� 1, thereby cancelling all output
differences depending

1
on the latter.

The differentials in Table 6.1 only hold for input differences having exactly one active bit.

Obviously, when allowing input differences with a larger number of active bits the situation

gets immediately a lot more complex. This could lead to situations where active bits of

different words interact and cancel each other out. For example an input difference (α0[n−
1], α1[n− 1], 0, 0) leads to a cancellation of the probability 1 output difference α0[n− 1] in the
output word a: The two active bits in the input words a and b neutralise each other during
the update of the word a. We will see below how this property can be exploited to build
differentials for G having high probability and low weight output differences.

To compute the output differences for G we can obviously proceed in the following way:

(α0, α1, α2, α3)
G1−→ (β0, β1, β2, β3)

G2−→ (γ0, γ1, γ2, γ3)

Listing all 1-bit output differences γw[j] of G on an arbitrary input difference αv[i] is quite a
complex task. Thus we only give an estimation of the maximum number of active bits in the

output difference γ := (γ0, γ1, γ2, γ3) after one application of G. Table 6.2 lists the results,
which were also confirmed experimentally.

6.1.3 Simple differentials

In this section we show how to construct a class of high probability differentials for the round

function F and a small number of iterations FR
. We will focus here on NORX64, but similar

considerations should hold for NORX32.

We first consider a simple attack model where the initial state is assumed chosen uniformly at

random and where one seeks differences in the initial state that give biased differences in the

state obtained after a small number of iterations of F. High-probability truncated differentials
wherein the output difference concerns only a small subset of bits (e.g., a single bit) are

sufficient to distinguish a (reduced-round) permutation from a random one, and are easier to

1
We refer to Figure B.1 in the appendix for a visualisation of the relations between input and output differences

of G1.
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β0[j] β1[j] β2[j] β3[j] Pr(αv[i]
G1−→ βw[j])

α0[i]

α0[i] 0 0 0 1

α0[i]� 1 0 0 0 2−1

0 α0[i] ≫ (r0 + r1) 0 0 1

0 ((α0[i] ≫ r0)� 1) ≫ r1 0 0 2−1

0 (α0[i]� 1) ≫ (r0 + r1) 0 0 2−1

0 (((α0[i]� 1) ≫ r0)� 1) ≫ r1 0 0 2−2

0 0 α0[i] ≫ r0 0 1

0 0 (α0[i] ≫ r0)� 1 0 2−1

0 0 (α0[i]� 1) ≫ r0 0 2−1

0 0 ((α0[i]� 1) ≫ r0)� 1 0 2−2

0 0 0 α0[i] ≫ r0 1

0 0 0 (α0[i]� 1) ≫ r0 2−1

α1[i]

α1[i] 0 0 0 1

α1[i]� 1 0 0 0 2−1

0 α1[i] ≫ r1 0 0 1

0 α1[i] ≫ (r0 + r1) 0 0 1

0 ((α1[i] ≫ r0)� 1) ≫ r1 0 0 2−1

0 (α1[i]� 1) ≫ (r0 + r1) 0 0 2−1

0 (((α1[i]� 1) ≫ r0)� 1) ≫ r1 0 0 2−2

0 0 α1[i] ≫ r0 0 1

0 0 (α1[i] ≫ r0)� 1 0 2−1

0 0 (α1[i]� 1) ≫ r0 0 2−1

0 0 ((α1[i]� 1) ≫ r0)� 1 0 2−2

0 0 0 α1[i] ≫ r0 1

0 0 0 (α1[i]� 1) ≫ r0 2−1

α2[i]

0 α2[i] ≫ r1 0 0 1

0 (α2[i]� 1) ≫ r1 0 0 2−1

0 0 α2[i] 0 1

0 0 α2[i]� 1 0 2−1

α3[i]

0 α3[i] ≫ (r0 + r1) 0 0 1

0 (α3[i]� 1) ≫ (r0 + r1) 0 0 2−1

0 0 α3[i] ≫ r0 0 1

0 0 (α3[i]� 1) ≫ r0 0 2−1

0 0 0 α3[i] ≫ r0 1

Table 6.1: Output differences βw[j] and their probabilities after G1 on an input difference αv[i].

a0[i] a1[i] a2[i] a3[i]

max. hw(γw) 102 115 34 39

Table 6.2: Maximum Hamming weight of an output difference γw after one application of G
on an input difference αv[i].

find for an adversary than differentials on all b bits of the state. To find such differentials we
start from our previous analysis of G and extend it to FR

. First, we observe that it is easy to

track differences during the first few steps, and in particular to find probability-1 (truncated)

differential characteristics for a small number of iterations of F.
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For example, by setting the active bit in the MSB of one of the input words a, b, c or d of G
a lot of differences are erased due to the shift operation� 1, as already noted previously.
Concretely, using two input words with the input difference α0[63], i.e. the MSB being active in
input a, six of the twelve output differences of G1 (!) are erased by� 1 (cf. Table 6.1). As the
shift is applied to the non-linear part of G a lot of non-probability-1 differences are deleted,
while mainly probability-1 differences remain. Additionally, if distinct input words have active

bits in the same positions it leads to further cancellations. Using this simple strategy we found

three notable differentials for G of high probability and with low weight output differences:

(8000000000000000, 8000000000000000, 8000000000000000, 0000000000000000) G−→
1

(0000000000000000, 0000000000000001, 8000000000000000, 0000000000000000)

(0000000000000000, 8000000000000000, 8000000000000000, 8000000000000000) G−→
2−1

(8000000000000000, 0000000001000001, 8000000000800000, 0000000000800000)

(0000000000000000, 8000000000000000, 8000000000000000, 8000000000000000) G−→
2−1

(8000000000000000, 0000000003000001, 8000000001800000, 0000000000800000)

Applying those differentials to F has the effect that the diffusion of the state is delayed by
one step. Note that input differences with other combinations of active MSBs lead to similar

output differences, but none with a lower or equal Hamming weight as the above. Using the

first of the above differentials, we were able to easily derive a truncated differential over 3
steps (i.e. F1.5

), which has probability 1. This truncated differential can be used to construct
an impossible differential over 3.5 rounds for the 64-bit version of F, which is shown in the
next section.

We expect that advanced search techniques are able to find better differential distinguishers

for a higher number of iterations of F, such that the sparse difference occurs at a later
step than in the first. Nevertheless we expect that it is not possible to find differential

distinguishers for as much rounds as specified for our instances, see Table 2.1, taking into

account the reduced freedom an adversary has, when attacking the initialisation or round

permutation.

6.1.4 Impossible differentials

Cryptanalysis using impossible differentials was introduced in 1998 by Knudsen to attack the

block cipher DEAL [37]. Later it was extended by Biham et al. in order to attack the block

ciphers Skipjack [22] and IDEA [23]. The latter introduces the so called miss-in-the-middle
technique. This approach combines two probability 1 differentials, one in forward and one
in backward direction which exhibit a conflict when both directions are joined. This strategy

leads to an impossible event, i.e. an incident having probability 0, and can be used to construct
distinguishers or even mount key recovery attacks.

In our case we construct an impossible differential over 3.5 rounds of the 64-bit version of F,
namely 3 steps in forward and 4 steps in backward direction, using the miss-in-the-middle
approach from above. An illustration

2
of the used differentials and the resulting conflict is

given in Figure 6.1. A * denotes a partially known and a ? an unknown entry. Our analysis
2
We refer to Figure B.2 in the appendix for the bit representation of the output differences.

37



8000000000000000 0000000000000000 0000000000000000 0000000000000000

8000000000000000 0000000000000000 0000000000000000 0000000000000000

8000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

F1.5
y

???*?*???***?**? *0**??*000000*** ***0?*?*00**000* 00**??*00***?***

???*????*??????? ?***??*????*?*?? ??*0???*0?*?*??* ??**?*?????*?*??

????*????*?????? ?*00000????*?*?? ??*0*?**0**?*??* ??**?*????****??

???***??*????*?* *000000****0**?? ?*00**0*0****0** ******?**?****??

* = *1002 vs. 0 = 00002

???????????????? ???????????????? ???????????????? ????????????????

???????????????? ???????????????? ???????????????? ????????????????

???????????????? ??????????????80 ???????????????? ????????????????

???????????????? ???????????????? ??????????????80 ????????????????

F−1.5 ◦ col−1
x

0000000000000000 0000000000000000 8000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

Figure 6.1: An impossible differential over 3.5 rounds of 64-bit F.

shows that the conflict occurs in the 2nd bit of the 14th word. In forward direction this bit has
always

3
value 1 whereas in backward direction it has always value 0. Note that there are many

more impossible differentials of the above type starting from comparable input differences in

forward and backward direction. Nevertheless, using such a simple approach, we were not

able to construct impossible differentials stretching over more than 3.5 rounds.

Those impossible differentials cannot be used to attack (round-reduced) NORX, due to the

following reasons:

1. The state setup used during initialisation prevents an attacker from setting the required

input difference in forward direction. It would be necessary to set differences in the first

three consecutive MSBs of a column, which is impossible, as every column is initialised

with at least two constant values (see §§2.6.4). Thus, even in the related-key attack model
it is not possible to exploit this class of impossible differentials.

2. Under the assumption that an attacker is nonce-respecting [44] and that FR
provides

maximum security for R ≥ 4, two states being set up with two different nonces lead to
two distinct internal states after the initialisation phase. Therefore an attacker does not

know how to set header blocks to construct the required input difference in forward

direction. The same holds for the payload phase. In summary the impossible differential

cannot be exploited at a later phase of the algorithm either.

3
The impossible differential was validated empirically in about 232

runs.
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6.2 Algebraic cryptanalysis

Algebraic attacks on cryptographic algorithms discussed in the literature [5, 7, 27, 30] target

ciphers whose internal state is mainly updated in a linear way and thus exploit a low algebraic

degree of the attacked primitive. However, this is not the case for NORX, where the b inner
state bits are updated in a strongly non-linear fashion. In the following we briefly discuss the

non-linearity properties of NORX, demonstrating why it is unlikely that algebraic attacks can

be successfully mounted against the cipher.

A convenient way of representing a Boolean function is through its Algebraic Normal Form
(ANF). Given a Boolean function f : {0, 1}n −→ {0, 1}, the ANF representing f is a multivariate
polynomial, i.e. a sum of monomials in n input variables. Both a large number of monomials
in the ANF and a good distribution of their degrees are important properties of non-linear

building blocks in ciphers.

We constructed the ANF of G and measured the degree of every of the 4W polynomials and

the distribution of the monomials. Table 6.3 reports the number of polynomials per degree

for the 32- and 64-bit versions, as well as information on the distribution of monomials.

#polynomials by degree #monomials

3 4 5 6 7 8 min max avg median

64-bit 2 6 122 2 8 116 12 489 253 49.5
32-bit 2 6 58 2 8 52 12 489 242 49.5

Table 6.3: Number of polynomials by degree, and number of monomials by polynomial.

In both cases most polynomials have degree 5 or 8 and merely 2 have degree 3. Multiplying
each of the above values by 4 gives the distribution of degrees for the ANF of the whole state
after one column or diagonal step. Due to memory constraints, we were unable to construct

4

the ANF for a single full round F, neither for the 64-bit nor for the 32-bit version. In summary,
this shows that the state of NORX is updated in a strongly non-linear fashion. Due to the

rapid growth of the degree and the huge state size of NORX we believe that it is unlikely that

algebraic cryptanalysis can be used to successfully mount an attack on the AEAD scheme.

6.3 Other attacks

In this section we briefly review other kinds of attacks that may be used against NORX.

6.3.1 Fixed points

The G permutation and thus any iteration of the round function F have a trivial distinguisher:
the fixed points G(0) = 0 and FR(0) = 0. Nevertheless it seems hard to exploit this property,
as hitting the all-zero state is as hard as hitting any other arbitrary state. Thus the ability to

hit a predefined state implies the ability to recover the key, which is equivalent to completely

breaking NORX. Therefore the zero-to-zero point is no significant threat to the security of

NORX.

4
Using SAGE [46] on a workstation with 64 GiB RAM.
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Furthermore, we used the constraint solver STP [31] to prove that there are no further fixed

points. For NORX32 the solver was able to show that this is indeed the case, but for NORX64
the proof is a lot more complex. Even after over 1000 hours, STP was unable to finish its
computation with a positive or negative result. We find it unlikely that there are any other

fixed points in NORX64 besides the zero-to-zero point.

6.3.2 Slide attacks

Slide attacks try to exploit the symmetry in a primitive that consists of the iteration of a

number of identical rounds. They were introduced by Biryukov et al. [25, 26] to cryptanalyse

block ciphers. Later they were also extended to stream ciphers [42] and hash functions [32].

To protect sponge constructions against slide attacks two simple countermeasures can be

found in the literature:

1. In [32] it is proposed to add a non-zero constant to the state just before applying the

permutation.

2. In [41] it is recommended to use a message padding, which ensures that the last

processed data block is different from the all-zero message.

The duplex constructions is derived from sponge functions, hence the above countermeasures

should hold for the former, too, and thus for NORX. Both defensive mechanisms are already

integrated into NORX: The domain separation constants, see §§2.6.3, are added to the state

just before the permutation FR
is applied and the multi-rate padding, see §§2.6.5, ensures

that the last processed data block is different from the all-zero block. Hence, slide attacks

should pose little to no threat to NORX.

6.3.3 Rotational cryptanalysis

Rotational cryptanalysis was introduced by Khovratovich and Nikolić in [35] to analyse ARX

based primitives. The idea is to track the propagation of rotational relations through a

cryptographic transformation. Once rotation-invariant behaviour is detected, it can be used

to construct distinguishers, mount key recovery attacks and so on. Rotational cryptanalysis

was successfully applied to several simplified cryptographic primitives including Skein [36]

and Keccak [39].

NORX includes several defense mechanisms to increase the difficulty of finding exploitable

rotation-invariant behaviour:

1. During state setup 10 out of 16 words are initialised with asymmetric constants, which
impedes the occurrence of rotation-invariant behaviour and limits the freedom of an

attacker. A similar approach is also used in Salsa20 [13].

2. The non-linear operation of NORX contains a non rotation-invariant bit-shift� 1.

3. NORX is based on the duplex construction, which prevents an attacker from modifying

the complete internal state at a given time. He is only able to influence the rate bits,

i.e. at most r = 10W bits of the state, and has to “guess” the other 6W bits in order to

mount an attack.
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7 Intellectual property

We, the designers of NORX, do hereby declare that

• NORX is free for everyone to use;

• We are not aware of any patent or patent application that may cover the practice of the
NORX algorithm;

• We have not filed any patent application related to the NORX algorithm.

If any of this information changes, the submitter/submitters will promptly (and within at most

one month) announce these changes on the crypto-competitionsmailing list.
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8 Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection committee

regarding the selection or non-selection of this submission as a second-round candidate, a

third-round candidate, a finalist, a member of the final portfolio, or any other designation

provided by the committee. The submitter/submitters understand that the committee will

not comment on the algorithms, except that for each selected algorithm the committee will

simply cite the previously published analyses that led to the selection of the algorithm. The

submitter/submitters understand that the selection of some algorithms is not a negative

comment regarding other algorithms, and that an excellent algorithmmight fail to be selected

simply because not enough analysis was available at the time of the committee decision.

The submitter/submitters acknowledge that the committee decisions reflect the collective

expert judgments of the committee members and are not subject to appeal. The submitter/-

submitters understand that if they disagree with published analyses then they are expected

to promptly and publicly respond to those analyses, not to wait for subsequent committee

decisions. The submitter/submitters understand that this statement is required as a condition

of consideration of this submission by the CAESAR selection committee.
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A Test Vectors and Intermediate Values

All of the following test vectors and intermediate values are denoted in little-endian format.

Order of values is left to right, top to bottom.

A.1 Traces for G

W = 32

(a, b, c, d) = (00000000, 00000000, 00000000, 00000000)
G(a, b, c, d) = (00000000, 00000000, 00000000, 00000000)

(a, b, c, d) = (00000001, 00000000, 00000000, 00000000)
G(a, b, c, d) = (00002001, 42024200, 21010100, 20010100)

(a, b, c, d) = (00000000, 00000001, 00000000, 00000000)
G(a, b, c, d) = (00202001, 42424240, 21010120, 20010120)

(a, b, c, d) = (00000000, 00000000, 00000001, 00000000)
G(a, b, c, d) = (00200000, 00400042, 00000021, 00000020)

(a, b, c, d) = (00000000, 00000000, 00000000, 00000001)
G(a, b, c, d) = (00002000, 42004200, 21000100, 20000100)

(a, b, c, d) = (80000000, 00000000, 00000000, 00000000)
G(a, b, c, d) = (80001000, 21012100, 10808080, 10008080)

(a, b, c, d) = (00000000, 80000000, 00000000, 00000000)
G(a, b, c, d) = (80101000, 21212120, 10808090, 10008090)

(a, b, c, d) = (00000000, 00000000, 80000000, 00000000)
G(a, b, c, d) = (00100000, 00200021, 80000010, 00000010)

(a, b, c, d) = (00000000, 00000000, 00000000, 80000000)
G(a, b, c, d) = (00001000, 21002100, 10800080, 10000080)

(a, b, c, d) = (FFFFFFFF, FFFFFFFF, FFFFFFFF, FFFFFFFF)
G(a, b, c, d) = (FFFF5FFE, 35F939FC, 1AFCFCFE, 5FFEFEFF)

(a, b, c, d) = (01234567, 89ABCDEF, FEDCBA98, 7654321F)
G(a, b, c, d) = (B7BF8099, 65A6E720, 1E22F5Cb, 1AA9E143)
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W = 64

(a, b, c, d) = (0000000000000000, 0000000000000000, 0000000000000000, 0000000000000000)
G(a, b, c, d) = (0000000000000000, 0000000000000000, 0000000000000000, 0000000000000000)

(a, b, c, d) = (0000000000000001, 0000000000000000, 0000000000000000, 0000000000000000)
G(a, b, c, d) = (0000002000000001, 4200004002020000, 2100000001010000, 2000000001010000)

(a, b, c, d) = (0000000000000000, 0000000000000001, 0000000000000000, 0000000000000000)
G(a, b, c, d) = (0000202000000001, 4200404002020040, 2100000001010020, 2000000001010020)

(a, b, c, d) = (0000000000000000, 0000000000000000, 0000000000000001, 0000000000000000)
G(a, b, c, d) = (0000200000000000, 0000400000000042, 0000000000000021, 0000000000000020)

(a, b, c, d) = (0000000000000000, 0000000000000000, 0000000000000000, 0000000000000001)
G(a, b, c, d) = (0000002000000000, 4200004000020000, 2100000000010000, 2000000000010000)

(a, b, c, d) = (8000000000000000, 0000000000000000, 0000000000000000, 0000000000000000)
G(a, b, c, d) = (8000001000000000, 2100002001010000, 1080000000808000, 1000000000808000)

(a, b, c, d) = (0000000000000000, 8000000000000000, 0000000000000000, 0000000000000000)
G(a, b, c, d) = (8000101000000000, 2100202001010020, 1080000000808010, 1000000000808010)

(a, b, c, d) = (0000000000000000, 0000000000000000, 8000000000000000, 0000000000000000)
G(a, b, c, d) = (0000100000000000, 0000200000000021, 8000000000000010, 0000000000000010)

(a, b, c, d) = (0000000000000000, 0000000000000000, 0000000000000000, 8000000000000000)
G(a, b, c, d) = (0000001000000000, 2100002000010000, 1080000000008000, 1000000000008000)

(a, b, c, d) = (FFFFFFFFFFFFFFFF, FFFFFFFFFFFFFFFF, FFFFFFFFFFFFFFFF, FFFFFFFFFFFFFFFF)
G(a, b, c, d) = (FFFFFF5FFFFFFFFE, 35FFFF3FF9F9FFFC, 1AFFFFFFFCFCFFFE, 5FFFFFFFFEFEFFFF)

(a, b, c, d) = (0123456789ABCDEF, FEDCBA9876543210, 0123456789ABCDEF, FEDCBA9876543210)
G(a, b, c, d) = (06E0F91F53B5CA4B, 1D4225AFF0B8887D, 26541088639A5752, 5A343C6186E9E1DA)
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A.2 Traces for F

W = 32

S =


00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000



F(S) =


04004001 20200400 20042020 4A4A8A08
01880885 8A424A40 4A024A02 C24A0248
41212104 888C4C4A 41210520 05212101
05012000 20202004 884A4A08 40210500



F2(S) =


EFDB6055 4EB0C8FD 4D66BAD5 A5716F6F
3315BA06 B5E09122 44A18E71 51E36297
F137B870 3C7265F6 00C30D5B 295A09AA
B42B85E7 AC007723 742077A7 4BADCF9B



F3(S) =


B49E8FA1 B87AED22 86152D27 BEB398AD
BD48EB80 1D4447DA B7458BA9 A9E9EF9B
F7599C6A 203FB309 694A1283 C4875743
F4E78B62 50BE8206 7BEF5DF7 F92F6B9C



F4(S) =


D8936EA9 4FDFA7F9 2E23D116 ED7C3692
3E463C40 A5AA5D55 A05A6E11 D22C7D58
3C0D461D 5D78E74F 88C9121B ECA4CA13
E12928CB 0167E06D 90E1494E 7CBBCCDA



F5(S) =


DC4D4AE5 2EA22D30 0F46317D 61B76178
317CF942 AA617101 B1B646B0 9FB8201C
31E77E87 0E87682D AB27674A 1C00EF33
49676DA0 5E36BB3F 369CB43A F6E575E8



F6(S) =


472112C6 EBBA21DD 69FAF1B0 06AADA3C
958968BA FAF43AF0 8A346D6C 04DAD629
28C63C70 F49BAA13 57DE5F7C 28841E18
EA3F594F 8D744A62 57B54FF1 753A4160



F7(S) =


865ACF57 0B1CD341 44571AAD 1E351C75
679AB711 8D923CDC 115DC180 CF5E7435
94D66EB3 6B643DA7 C71FD3A8 EACD114A
FE5A4582 101A0A61 DEF929CE F81307CE



F8(S) =


EE830EF5 EFEDB52C D9B5DDE0 11699703
A59F827F E7DA769E 9ACF9688 FE6B4EE6
2D99EFFF C1F42728 1B33FCE4 2484C32D
454DEF51 65220E90 D8B53023 10265221


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W = 64

S =


0000000000000001 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000



F(S) =


0000004000000401 2020000400000000 2000042000000020 42400888420A0840

1008008580981891 8240004842020800 4800020A00420200 C200084042420048

4100000021210004 8844080A80440408 4120000421010000 0420010100210100

0400010100200000 2000000020200004 8802080A40420208 4020000401010000



F2(S) =


9D802FD127A732A1 BFDC94FCF7EDB4F6 50E28C54A198AD0E 09FCDB8FCCC9DDA8

7ACEC81E5BAA6D25 10C9CBCF5BFEFC27 11A152F2C1A43FCA 6BA77CCFA2D9F407

0E03AD8E4F36AD96 B405D697E680A2BB 3651B1301374F05D EC2A3CD28E701034

D793C96953AA22B3 81B56FC8F78827DD A5F18C894182A861 F95F620C599E1A7D



F3(S) =


6D9C774FB118B930 0AD4888256442919 B2625AFA68288616 3F682524B541B12D

09FB30C77ED1253C D276B00A56FA3BB2 D1A3ED2B432628E0 59DE47C408703466

730C85F6CF7CD9B4 D731F331C620402D 664456562656A61E 10F001A72ABF1CCA

E04F26164B84BCD5 E1CE43EA4AC71790 BE0A7BDA26AB8C3E 083CB972BE746F0D



F4(S) =


9AE671BAC4106A33 2532A3AF80EB8C24 8807B8748AAF89BB CCBD275D7AC0180C

9E3C9A644E2EE2B1 6EF830BF37A17BB2 A56A3F09DA96ABC9 6674A590854EA97D

D58BFB1A8D2677C5 5696D8DEA26A6D6D 2E973803C96922A4 9C8EC44641A390FD

ABE2F120F069F77A 305FE9E02B725884 1D2A9380316FE1A6 8FA5B15C10F77415



F5(S) =


E7BC1BB342393A06 4497F473D8AE5B3A 238B885A51663B54 FCFD9F88948D42A7

5B6E332077A59C5D C798AA981789AC8D F916664458B5AD3F F7086A16B2407A56

8DD6CEC45AC62D09 2C217A7DC1AB282C 8AA14855B8A7A065 1BA096650A8E8F6D

9ECAB9E7A91D59FE A57F363A65CF10D3 F16FCED7A605DFE9 C02D0A46B23E8C31



F6(S) =


2FCA68C9B1691627 59E2B79D4B2A88F8 D44A3CC624C9028F 6295CCEC81F0F5AF

AFBA11EEC8CE43A4 A6BC58426BDAB6AC C9FA0754D15A38A6 61B7C093B862D551

B7A8A66A9227EE06 17BEF1A5F98B7250 CCAA13033F5ADCD3 15CBCEF3A8A993B5

2E321403DA39690B D805E663071507B0 6D7EBAA185FF9F07 64071C2C7A0205EA



F7(S) =


BF643FF50F9B521B D6ECDEF9B9AC18B0 29C44312EB0ED72A 6AA97E4B4BF39E0A

A957D54C2B38DF1B 23E4928A7504F6B8 6CFEE0C2D418DC84 10464EB477E6D548

18A96DABB8BBC145 406A6EE1C806F1E4 A54BD0A7B7291B4A 27BC2F8593DD77BE

3BE8FF6116D7AFB0 4D78AEB59B3A9C25 9F03C664A44601DC DDBE9B34DA020E59



F8(S) =


F51507DD9E95189F AB5E0B1641FAD08F 09B7BF70943B60DE E35D03636672DACD

1D013C731A134DCD 850FC95D9CA677C8 48D78D3658CBE8D0 3898A93514FBF49D

8849E2B60F59D433 A1C7E702A391D4B9 C0057990DE07D3EE 6BBF9A8B0E6CB108

7DE67998BA91A9CE 68F2B4BC4B8F6A52 4EFE2C5711E64647 27173B06EFB20807



51



A.3 Full AEAD computations

Unless stated otherwise, intermediate values are snapshots of the state after the final per-

mutation of a given phase. For example, for D = 1 the end of the header processing denotes
the state after final permutation FR

in the header phase or in other words, it is the state

before the first payload data block is absorbed. This corresponds to the state after the third

application of FR
in Figure 2.1, assuming that two header blocks are processed.

A.3.1 Values for NORX32

We assume that the following input data is given:

K : 00112233 44556677 8899AABB CCDDEEFF
N : FFFFFFFF FFFFFFFF
H : 10000002 30000004
P : 80000007 60000005 40000003 20000001
T : null

Padded header and payload

pad320(H) : 10000002 30000004 00000001 00000000
00000000 00000000 00000000 00000000
00000000 80000000

pad320(P) : 80000007 60000005 40000003 20000001
00000000 00000000 00000000 00000000
00000000 80000000

Basic state setup

243F6A88 FFFFFFFF FFFFFFFF 85A308D3
00112233 44556677 8899AABB CCDDEEFF
13198A2E 03707344 254F537A 38531D48
839C6E83 F97A3AE5 8C91D88C 11EAFB59

Note, that the basic state is the same for all of the following instances.

NORX32-4-1

End of initialisation

45079318 15859046 2D54327F 05340C5E
25968B63 D63C2815 4E56477B 67296814
74E8F429 063B7AC4 CE0B7244 F1ED4AAE
7A07FD03 143815BE C62D6471 79949917

End of header processing

9F8F35CA AAFA2A3D 324C1414 028732CB
428AEE2C C6CB8013 DD7DB211 334C8138
A204652A 2AD0B71F 693ACC09 22A8BF7A
2E0239D6 31112F7F 8B542A96 009A5230
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End of payload processing

7702CA8A E8BA5210 FD9B73AD C0443A0D
82B2A588 C1220339 5E40B34C 0F29A284
E1F07668 9A8124DF 529A07FA 46750AB6
4985A971 9A42DF66 7FC2E9B4 68D4D56D

Ciphertext and authentication tag

C : 1F8F35CD CAFA2A38 724C1417 228732CA
A : 7702CA8A E8BA5210 FD9B73AD C0443A0D

NORX32-6-1

End of initialisation

3520362B EFEEB49F CD8C723D 6895CCFF
6A328C16 EA2E58C3 95324CE4 067097EF
B27A6CCE 85A6D78F 5C48D4A7 BA30CF41
ADDB0BA0 6840050D 6F9519FA F984872C

End of header processing

598EDABD 45C18DDC E0CA4C35 D73309C7
52B0EEED 6C68E782 21F94224 ECC9AE6D
405C64B9 8C7F1F06 16288D77 8F8A701F
6EF702CB ECE8A30C 9958980B A9C2C80B

End of payload processing

69872EE5 3DAC068C E8D6D8B3 0A3D2099
172CC220 D60C8413 2E44AB22 B84CBD3B
30F66F19 789B5878 B96BFA8D 7A09BAD1
D6218207 5DFA310F 745DD644 7E3CE144

Ciphertext and authentication tag

C : D98EDABA 25C18DD9 A0CA4C36 F73309C6
A : 69872EE5 3DAC068C E8D6D8B3 0A3D2099

A.3.2 Values for NORX64

We assume that the following input data is given:

K : 0011223344556677 8899AABBCCDDEEFF FFEEDDCCBBAA9988 7766554433221100

N : FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF

H : 1000000000000002 3000000000000004

P : 8000000000000007 6000000000000005 4000000000000003 2000000000000001

T : null

Padded header and payload data
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pad640(H) : 1000000000000002 3000000000000004 0000000000000001 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 8000000000000000

pad640(P) : 8000000000000007 6000000000000005 4000000000000003 2000000000000001

0000000000000001 0000000000000000 0000000000000000 0000000000000000

0000000000000000 8000000000000000

Basic state setup

243F6A8885A308D3 FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF 13198A2E03707344

0011223344556677 8899AABBCCDDEEFF FFEEDDCCBBAA9988 7766554433221100

A4093822299F31D0 082EFA98EC4E6C89 AE8858DC339325A1 670A134EE52D7FA6

C4316D80CD967541 D21DFBF8B630B762 375A18D261E7F892 343D1F187D92285B

Note, that the basic state is the same for all of the following instances.

NORX64-4-1

End of Initialisation

D022DC01B3866148 89FCA8C1843BF785 30A1ECB49A02AADB 1000C747A44124FB

4E672A9AAF5E921E 16420D6BBA6B9F4E 73CEA9B7998DBF50 9F651146DA367E54

305CB8FED9C0ED60 F722C6F74FCF070B C245AFF1112C7437 74DFEA28BA0416A9

30A18E5406072314 5D2E526BF85AC19C 85B14AD2AC1C9386 5AB3B60CFCB12F6F

End of header processing

9B4DCCFF6779A2C4 E65464C856BC4B09 9ADBC58565E16909 0CB12C0BE9D2F044

D0C80C37C3918211 8C5C7C6B40047B0E C2603917D10C587B DEFAD74C772BC0B2

D170DF446F28760F E505EB2E805DA8A7 8BF3FB43E7C2B420 2203D8187F422421

71B1B43879475337 D02C2522F65982A8 05EEDE3E0800601B 2028AC58C98320EC

End of payload processing

D0CE5276FDEC9F6E 33EE64CE5CCA3ABA 1187C05183464BD0 A0915ECA6FAF8757

A3E9C1D118136885 AB8538FF8C277EE1 E2E41174CAB5FBEA 20B8A68439999754

041372C291B970B3 E07C5BBEF0086609 7933168208A35AE3 552BF5B67660BB00

5F632E79247130C8 D56F0A370A5E8E6A EDFA24DD54998983 11ECB808957B8F4B

Ciphertext and authentication tag

C : 1B4DCCFF6779A2C3 865464C856BC4B0C DADBC58565E1690A 2CB12C0BE9D2F045

A : D0CE5276FDEC9F6E 33EE64CE5CCA3ABA 1187C05183464BD0 A0915ECA6FAF8757

NORX64-6-1

End of Initialisation

20F8D2782DDF6C31 DD69927096686A90 F8CBD5150CDBA438 0EBE20BA1E4DCB1D

1A294BB54962722F 565C8AF32629FDC1 8B428024526F8A61 82967A5203570FE4

B1F72B4736F4CED7 BD266AA84E2C095B C5C16C9F0BEAD689 18A71CD9A6DE70C6

41BF1B9A3C074F0A F577BDE52AB57012 4B20530598D0CD33 1E8D98F07FFE8723
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End of header processing

F223675B69C7A933 7EBAB65233E8DC20 EB660E1BF0F3FEEB 51BE33115B333D6C

5D275000BC021125 20EC5593FE81C7F8 6CC5432F5B3E879A 6E1F8413890FD70E

6F7C347636684E70 F14CECB5241C7A1A 35B7ADD82A64187C B4A91E5E8880A867

E01438E7B2BD3A0F 014CBAC9B987229F EC5A0A9A719CC814 FD18778BF21FDD38

End of payload processing

A05D644CCD2C5887 31DE2501AE4FE789 5C153D99943D29A4 98353A0E38D58A93

31CDF7F6E18DFF65 5510B9B54B7C3C18 4598EAFF89AF00B0 82400B0CE2D0E303

67F11561CFB79DD0 06EC3CF4172108FB 9A70B294DC4B00F3 69D44FC00F5EC17E

E3D7597BD0C27D89 39D0BF81B1D7F23E E914593F1725E80B 0377D9F0A6C4E8B9

Ciphertext and authentication tag

C : 7223675B69C7A934 1EBAB65233E8DC25 AB660E1BF0F3FEE8 71BE33115B333D6D

A : A05D644CCD2C5887 31DE2501AE4FE789 5C153D99943D29A4 98353A0E38D58A93

NORX64-4-4

Due to the small size of the payload, only lane L0 is processing actual payload data. Lanes L1,

L2 and L3 are processing only padding blocks.

End of initialisation

1A89ABA695E14478 2A8948869113AAC0 980E79B43FE58D71 571062C847AF564C

0E6F5777A9E7BD51 B2A95AE36EEE66D9 0B558CB3D4C54D73 DFB0D84743496F37

0903BCFB370F92EE A49E9E405F37734F 16D82D55E403FC2D 76FDE340B5A5DAF9

BF69D495C9A57C2B 12D15F1738391169 A4D4AE1365987627 FB13B8D9D7DB27C2

End of header processing

80F9216CD3ECFA69 F2BE76817E8258AB 8CFD7A31EDA2A966 5BF8CBBA4D36791B

136964C7FEE1E9BE 3BD8C9DAF1B8D602 7273E544EF7DE324 227565DF743A2506

1DEA0740ED1671C0 CD6C06D59AAAF9F5 E3035BBBDB4E0CD4 BDAED547402B66E3

921233DFEB162B82 7BE4484009B4BDF2 E35FBC654F676627 FDF37CFC2BDF9AAA

End of payload processing L0

4591F9318DFC4A11 32731D622AA600EA FDED62FD8EC05F5B 2836B1B28EED8EDC

9902A74D7AEC5511 54A6F4ADA38CA811 3BA317627300EAB8 C121C8B978667D8C

25837DF4190AE9E3 ED6A5E21A7E317E1 EEE71FAE8F27EEFD 87449FBCE89CFB7E

8CD2EB4BF5F504D8 F0C3920A3A8ECD8C 90EE2EA98A42515D B00F0E05E4B67B60

End of payload processing L1

BF4B336606F0579B E839B6688C9AA4E1 AEBB453DDCD47DCA 25F2445949CCDE12

C38FADBFDC029397 0999A856C0ED59D2 9834BF8A824B224C E5FD5F6B2229A3F4

D213AD1685D54A46 213DF3E20DCBE743 68DD8ACCBE00F900 25710A57E2F8F94F

3B8491313BE60C80 D88B0207C7354964 9C1AD7E81F3BC47E 2DBBC44A824451ED

End of payload processing L2
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145F870F7727DD13 4A7F6217BF3420E3 D17E70DD11025563 8FDBA2EF5956FA12

388F662997591452 6C34B916B5162351 FACA66C4DD8BA81B D330A4A5291D91A7

30548C2748542FB4 00CA0A7BA290FEFA B4C6D022569E91C7 C38B3D835417C1AE

C78EFD3AC729A4C7 C6F532A6F400BF8F F07CEC6CF249DF70 8FDE1A2E304F8241

End of payload processing L3

19A6559E6072DF53 A96A64AD9FF61438 014748A082167AAA A5AAF4EF434DEC68

56CB062E01F6C0EC 4BD58AAE85F731F5 A16A54D371ABA6F2 B3EF8E28E0332385

5E115E4AB87479D5 C8E84A36D0D37A65 56E722D16455E58F D9EE43C73F258110

77199C8FF845950A 794D65C385DD9E6B A2E06A749A1D6BCC 19255666CB1C4D16

End of merging

118D01C54E8C0A9F C2402B4DC1951A6F F7911EFBF3942998 A3CB7559461D838D

A0E95A27F9A5FDB8 22F3308F4DA936AC 55E30CFBC038992E 2AAD744A49A6797D

8431377093D07662 EE8734D52BC81B3A E56D85EDC6CA2D8A 3D709885E508675B

68D0C0C0D0550D2E 12E9AEF86CF6AC31 6B7F7E81D7B8F57A 865046F538D68BB3

Ciphertext and authentication tag

C : 4591F9318DFC4A11 32731D622AA600EA FDED62FD8EC05F5B 2836B1B28EED8EDC

A : 256284AD4965C563 85E32C4244ABCC3A 3E6B49CB02DB6AF6 E885462500F37A1E
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B Miscellaneous

B.1 Diffusion statistics for inverse round functions

Table B.1 shows the diffusion statistics of the inverse round functions of NORX and ChaCha.

Inverse NORX32 Inverse ChaCha (32-bit)
R min max avg median min max avg median

1 17 162 49.444 47 17 126 44.776 44
2 160 306 247.737 248 164 304 244.982 246
3 202 307 255.991 256 203 310 255.994 256
4 202 315 256.018 256 200 311 256.022 256

Inverse NORX64 Inverse ChaCha (64-bit)
R min max avg median min max avg median

1 17 203 51.346 49 17 142 46.129 45
2 262 568 433.742 435 194 543 382.667 383
3 440 593 511.995 512 440 591 511.964 512
4 435 585 512.011 512 433 596 511.991 512

Table B.1: Diffusion statistics for inverse NORX and ChaCha round functions.

B.2 Addenda to cryptanalysis

B.2.1 Visualisation of differentials for G1

Figure B.1 depicts the relations of the output differences of G1 for input differences αi with one

active bit. The probability of an output difference in the tree can be computed by multiplying

the values on the edges of the path leading from the root to the particular node.

B.2.2 Impossible differential cryptanalysis

Figure B.2 shows the bit representations of the output differences of the impossible differential

over 3.5 rounds of NORX64, which was presented in §§6.1.4. The upper matrix illustrates the
difference in forward direction and the lower matrix the one in backward direction. Each row

corresponds to one of the 64-bit words of the state (denoted in little-endian), beginning with
s0 for the first row and ending with s15 for the last row. The conflict occurs in the 2nd bit of
the 14th word.
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G1(α[i], 0, 0, 0)

(α[i], 0, 0, 0)

(0, 0, 0, α[i] ≫ r0)

(0, 0, α[i] ≫ r0, 0)

(0, α[i] ≫ (r0 + r1), 0, 0)

1

1

(0, 0, (α[i] ≫ r0) ≪ 1, 0)

(0, ((α[i] ≫ r0) ≪ 1) ≫ r1, 0, 0)

1

2−1

1

1

(α[i] ≪ 1, 0, 0, 0)

(0, 0, 0, (α[i] ≪ 1) ≫ r0)

(0, 0, (α[i] ≪ 1) ≫ r0, 0)

(0, (α[i] ≪ 1) ≫ (r0 + r1), 0, 0)

1

1

(0, 0, ((α[i] ≪ 1) ≫ r0) ≪ 1, 0)

(0, (((α[i] ≪ 1) ≫ r0) ≪ 1) ≫ r1, 0, 0)

1

2−1

1

2−1

G1(0, α[i], 0, 0)

(α[i], 0, 0, 0)

(0, 0, 0, α[i] ≫ r0)

(0, 0, α[i] ≫ r0, 0)

(0, α[i] ≫ (r0 + r1), 0, 0)

1

1

(0, 0, (α[i] ≫ r0) ≪ 1, 0)

(0, ((α[i] ≫ r0) ≪ 1) ≫ r1, 0, 0)

1

2−1

1

1

(0, α[i] ≫ r1, 0, 0)

1

(α[i] ≪ 1, 0, 0, 0)

(0, 0, 0, (α[i] ≪ 1) ≫ r0)

(0, 0, (α[i] ≪ 1) ≫ r0, 0)

(0, (α[i] ≪ 1) ≫ (r0 + r1), 0, 0)

1

1

(0, 0, ((α[i] ≪ 1) ≫ r0) ≪ 1, 0)

(0, (((α[i] ≪ 1) ≫ r0) ≪ 1) ≫ r1, 0, 0)

1

2−1

1

2−1

G1(0, 0, α[i], 0)

(0, 0, α[i], 0)

(0, α[i] ≫ r1, 0, 0)

1

1

(0, 0, α[i] ≪ 1, 0)

(0, (α[i] ≪ 1) ≫ r1, 0, 0)

1

2−1

G1(0, 0, 0, α[i])

(0, 0, 0, α[i] ≫ r0)

(0, 0, α[i] ≫ r0, 0)

(0, α[i] ≫ (r0 + r1), 0, 0)

1

1

(0, 0, (α[i] ≪ 1) ≫ r0, 0)

(0, (α[i] ≪ 1) ≫ (r0 + r1), 0, 0)

1

2−1

1

Figure B.1: Relations of the G1 output differences.
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???? ???? ???? ??1? ???? 0??? ???? ???? ???? ??10 0??? ??1? ???? 1??? ?00? ????

??10 0000 0??? ?10? ???? ???? ??10 0000 0000 0000 0000 0000 0000 0??? ??10 00??

??10 000? ??10 0000 ???? ?100 ???? ?100 0000 0000 00?? ??10 0000 0000 0000 00??

0000 0000 00?? ?10? ???? ???? ??10 0000 0000 ?100 0??? ?00? ???? ?1?? ??1? ???0

???? ???? ???? ?10? ???? ???? ???? ???? 0??? ???? ???? ???? ???? ???? ???? ????

???? ??10 0??? 100? ???? ???? ?10? ???? ???? ???? ???? ??1? ???? 1??? ???? ????

???? ???? ?000 0000 ???? ???? ???? ??10 0000 ???? ?0?? ???? ?00? ???? ???? 10??

???? ???? ?1?? 000? ???? 1??? ???? ???? ???? ???? ???? ??0? ???? 0??? ???? ????

???? ???? ???? ??00 ???? ???? ???? ???? ?1?? ???? ???? ???? ???? ???? ???? ????

???? ???1 0000 0000 0000 0000 0000 ???? ???? ???? ???? ???1 ???? ?1?? ???? ????

???? ???? ??10 0000 0??? ???? ???1 0??1 0000 0??? ??0? ???? ??00 ???? ???? ?100

???? ???? ??1? ?100 ???? ?0?? ???? ???? ???? ???? ??1? ???0 0??? ?1?? ???? ????

???? ???? ???? ??10 0??? ??0? ???? ???? ?00? ???? ???? ???? ???? ??0? ???? 0???

??10 0000 0000 0000 0000 0000 0000 0??? ??10 00?? ???1 0000 0??? ?10? ???? ????

???? ?100 0000 0000 00?? ???1 0000 00?1 0000 00?? ??00 000? ??00 0000 ???? ?100

??10 00?? ??10 ?100 0??? ?00? ???? ?1?? ??1? ???? ??10 ???0 00?? ?10? ???? ????

vs.

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
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Figure B.2: Bit representation of a 3.5-round impossible differential for 64-bit F.
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