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Chapter 1

Specification

PAEQ [peik| (Parallelizable Authenticated Encryption based on Quadrupled AES) is an authenticated
encryption scheme. It is introduced together with a generic mode of operation PPAE, which takes a
permutation F of width n. PAEQ is PPAE where F is the AESQ [esk] permutation. PAEQ and AESQ
within it are defined in this submission, whereas the security bounds are proved for PPAE and hence
applicable to PAEQ or other instantiations of F.

1.1 Parameters

PAEQ has three parameters: key length, nonce length, and tag length. Each parameter is an integer
number of bytes.

e The key length is between 8 bytes (64 bits) and 32 bytes (256 bits).
e The nonce length is between 4 bytes (32 bits) and 32 bytes (256 bits).
e The key and nonce length in total does not exceed 48 bytes (368 bits).

e The tag length is between 4 bytes (32 bits) and 64 bytes (512 bits).

1.2 Recommended parameter sets

We recommend the following parameter sets (in bits) depending on the user’s requirements to the overall
security level and the need of extra features of nonce-misuse resistance and quick tag update.

Name ‘ Key length | Nonce length ‘ Tag length ‘ Comment
Primary sets
paeq64 64 64 64 64-bit security
paeq80 80 80 80 80-bit security
paeql28 128 96 128 128-bit security
Secondary sets
paeq64-t 64 64 512 64-bit security with quick tag update

64-bit security with nonce-misuse
and tag update options

paeql28-t 128 128 512 128-bit security with quick tag update

128-bit security with nonce-misuse

paeq64-tnm 64 128 012

paeql28-tnm 128 256 512 and tag update options
paeql92 192 128 128 128-bit security with 192-bit keys
paeql60 160 128 160 160-bit security
paeq256 256 128 128 128-bit security with 256-bit keys

The reference implementation allows for all these parameter sets, with the tuple (128,96,128) fixed
by default.



1.3 Authenticated encryption

1.3.1 Notation

The authenticated encryption scheme is denoted by II and is defined as a pair of functions £ and D,
which provide encryption and decryption, respectively. The inputs to £ are a plaintext P, associated
data A, a public message number N, a key K, and a tag length 7.

e The number of bytes in N is the nonce length. The bit length of IV is denoted by 7.
e The number of bytes in K is the key length. The bit length of K is denoted by k.

e The number of bytes in P is between 1 and 2°¢, and in A is between 0 and 276.

e There is no secret message number; i.e., the secret message number is empty.

The encryption function outputs ciphertext C' and tag T"
E:KXNXxAXP = CxT.

For fixed (N, A, K) the encryption function is injective and hence defines the decryption function. The
decryption function takes a key, a nonce, associated data, the ciphertext, and the tag as input and
returns either a plaintext or the “invalid” message L:

D: KxNxAxCxT — PU{L}.

For brevity we will write 5%"4(-) and DQ’A(-).

To accomodate nonce-misuse cases, the user may choose to generate N as a keyed function of plaintext,
key, and associated data. It is then called extra monce and denoted by N.. The user is then supposed to
communicate N, to the receiver, with ordinary nonce transmission rules applied.

Let X be an internal s-bit variable. Then we refer to its bits as X[1], X[2],..., X[s] and denote the
subblock with bits from s; to sg as X|[s1...ss2]. In pictures and formulas the least* significant bits and
bytes are at the left, and the concatenation of multi-bit variables is defined as follows:

XY = X[1]X[2]... X[{]Y[1]Y[2] ... Y]s].

The counter values have their least significant bits as the least significant bits of corresponding variables.
PAEQ is a concrete instantiation of generic mode PPAE, which takes permutation F of width n. In
this submission n is always equal to 512, and F is the AESQ permutation defined below.

1.3.2 PPAE mode of operation

For the domain separation the following two-byte constants are used:
D; = (k,(r+14) (mod 256)), i=1,2,3,4,5,6,

where the second value is taken modulo 256.
We refer to Figure [I.] for a graphical illustration of the PAEQ functionality.

Encryption.

1. During the first stage the plaintext is splitted into blocks P; of (n — k — 16) bits (n/8 — k/8 — 2
bytes) Py, Pa, ..., P.. We encrypt block P; as follows:

Vi < Dol |Ri| N K;
Wi — ]:(V;),
Here V;, W; are n-bit intermediate variables, and C; is a (n — k — 16)-bit block. The counter R; = i

occupies the (n — k —r — 16)-bit block. If last plaintext block is incomplete and has length ¢', then
Dy is replaced with D;.
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Figure 1.1: Encryption and authentication with PAEQ.



2. During the second stage we compute intermediate variables for authentication:
Y « (F(X)[17..(n — k)]

If the last plaintext block P; is incomplete, then we define P{ = Pi||allal| ... ||a, where a is one-byte
variable with value equal to ¢’, the byte length of P;, and define

Ol Will7..(n — k)] @ Pl;
X, ¢ Ds||ClIWil(n — k + 1)..n).

Y« DY
3. During the third stage we compute an intermediate variable for authenticating associated data.
The AD is splitted into blocks Aj, Ag, ..., Ag of length n — 2k — 16. Then we compute
Xi < Dal|Ri||Ai]| K
Y (F(X7)17..(n = E)],

where R; is a k-bit counter starting with 1. If the last AD block is incomplete (has t” bytes), it is
padded with bytes whose value is t”, and the constant Dy is changed to Ds. Finally,

Y @Yil;

4. In the final stage we compute the tag. First, we define
Z+YPy.

Finally,

and then,
T + F(Ds||Z| | K) & (0" *|| K).

The tag T is truncated to T'[1...7].
The encryption and authentication process is illustrated in Figure

Decryption. The decryption process repeats the encryption process with minor corrections. We de-
crypt as
with appropriate corrections for the incomplete block if needed. C; is used as given when composing Xj.
Finally, the tag T” is computed and matched with submitted 7. If T # T” (including length mismatch),
the decryption process returns invalid.

The plaintext is returned only if the tags match.

1.3.3 The AESQ permutation

The F permutation in this submission is the AESQ permutation, which is defined below. AESQ operates
on 512-bit inputs, which are viewed as four 128-bit registers. The state undergoes 20 identical rounds.
The rounds use standard AES operations: SubBytes, ShiftRows, and MixColumns, which are applied to
the 128-bit registers exactly as in AES (Figure .

The round constants are chosen as follows in the matrix register view:

Si+dj+k 8i+4j+k 8i+dj+k Si+4j+k

1 o 0 0 0
@ik = 0 0 0 0
0 0 0 0

Here is the Shuffle mapping that permutes columns of the internal states:

From | Af

S
=
=
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S
=
£
S
S
S
=
S
S
A=
<

cloj|cli|c[2]|C[3]| D[o] | D[1] | D[2] | D[3]
0| A[2]| D21 | ci31] B3] | Ajo] | Do) | 1] | B[]




Input: 128-bit states A, B, C, D, round constants Q; ;
for 0 <i< R=10do

for0<j<2do

A < MixColumns o ShiftRows o SubBytes(A);
Ap +— Ao D Qi jn;

B + MixColumns o ShiftRows o SubBytes(B);
By < By ® Qi j,2;

C + MixColumuns o ShiftRows o SubBytes(C);
Co + Co D Q5,3

D < MixColumns o ShiftRows o SubBytes(D);
Do < Dy @ Qi 5,45

end

(A, B,C, D) «+ Shuffle(A, B,C, D)

end

Algorithm 1: Pseudocode for the AESQ permutation with 2R rounds

1.3.4 Extra nonce

The extra nonce N, is a function of the key, the plaintext, and the associated data. It is not online, i.e.
it needs to know the length of all inputs and the output. It is the sponge hash function:

Ty = F(Q1]|0%%), Ty = F(T1 & (Q2|0%%)), ..., T = F(Tp_1 ® (Qnm|]0%%)),

and N, is the truncation of T, to r bits. The injection blocks @); come from the string ), which is

composed as follows:
Q = [P[[|A]|| ko[ o | K| | P[| A][10"1,

where |P| is the plaintext length in bytes, |A] is the associated data length in bytes, k; is the key length
in bytes, 7 is the nonce length in bytes, and 10*1 is the sponge padding: one byte with value 1, then as
many zero bytes as needed to fill all but one bytes in the injection block, and then the byte with value 1.
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Chapter 2

Security goals

Now we formulate the security goals for our primary sets of parameters, where the key, the nonce, and
the tag have the same length.

Key/tag length
64 bits | 80 bits | 128 bits
Confidentiality for the plaintext 64 80 128
Integrity for the plaintext 64 80 128
Integrity for the associated data 64 80 128
Integrity for the public message number 64 80 128

There is no secret message number. The public message number is a nonce.

The security bounds are proved in the random-permutation model in Theorems [1] (confidentiality)
and [2| (integrity).

If the nonce is reused to encrypt another pair (plaintext, associated data) under the same key, then
the confidentiality for the plaintext is no longer promised. However, the integrity for both plaintext and
associated data is promised up to the half of the security level, i.e. half of the key length (Theorem .

Additionally, the scheme offers the nonce-misuse feature, which generates the nonce (called extra
nonce) as a MAC out of the key, the plaintext, and the associated data. If the extra nonce is used,
the scheme offers confidentiality and integrity with the normal security level or half of the nonce length,
whatever is smaller (Proposition .

It is safe to use a single key with nonces of different lengths.



Chapter 3

Security analysis

3.1 Security analysis of the mode of operation

In this section we provide the security analysis of the PPAE mode of operation, which takes a permutation
F of width n. Though this submission fixes the permutation to AESQ and its width to 512 bits, the
following proof is useful when defining other scheme within the PPAE mode.

The security of a AE scheme is defined as the inability to distinguish between the two worlds, where
an adversary has access to some oracles and a permutation. One world consists of the encryption oracle
Ek(-,-,-) and decryption oracle Dg(-,-,-), where the secret key is randomly chosen and shared. The
second world counsists of the “random-bits” oracle $(-,-,-,-) and the “always-invalid” oracle L (-,-,-,).
In addition, the adversary and all the oracles have an oracle access to the permutation F. The encryption
requests must be nonce-respecting, i.e. all the nonces in those requests must be distinct. A decryption
request (N, A, C,T) shall not contain the ciphertext previously obtained with (N, A).

We give a security proof for a fixed key length k, nonce length r, and random permutation F of
width n. The variable-length security proof is not given in this submission, but can be mounted thanks
to the D; constants. The proof also does not take into account the calls to F made in the extra nonce
computation.

3.1.1 Confidentiality

We prove confidentiality as indistinguishability of the pair (ciphertext, tag) from a random string for
the tag length n. The result for truncated tags is a trivial corollary. Let ITI[F] be the PPAE mode
instantiated with permutation . We do not consider the decryption oracle here, as we later show that
with overwhelming probability it always returns L.

Theorem 1. Suppose adversary A has access to II[F|, F, and F~1, and let K E K. Let oy be the total
number of queries to F made during the calls to the 11 oracle, and or be the total number of queries to
F and F~1 oracles together. Then his advantage of distinguishing the oracle I1[F] from the random-bits
oracle $ is upper bounded as follows:

conf (Uf + UH)2 20'1%[ 20’3_— 20 ron
AdVH (A) S an + 2n—k—16 Qk oan—16 :

(3.1)

Proof. We denote i-th ciphertext by C? and its j-th block by CJ@. The same notation is used for
intermediate variables X,Y, Z.

In the games G; below, p; is the probability that A outputs 1. The following transitions between
games are made to prove the high probability of the following properties: first, that IT and the adversary
ask non-intersecting sets of queries to F or F~!, and secondly, that the ciphertexts and the tags are
composed of random and independent blocks and hence are indistinguishable from random strings.

Game Gy. The permutation F is randomly chosen. The adversary interacts with II, F, and F~!.

Game G;. The permutation F is defined in a lazy manner: we maintain a table T= which is initially
empty, and fill the table values whenever F or F ! are queried alone or within II.



Game G5. We modify oracles F or ! so that they choose the undefined values completely at random
from {0,1}", but explicitly abort in case the permutation constraint is not satisfied. The probability of
such an abort is upper bounded by (o7 + or1)?/2".

Game G3. We now require II to explicitly abort if there is a collision in the set {XJ@ 17...(n—k)]}i;
or in the set {T[1...(n — k)]}. The probability of this event is upper bounded by o /2"~ *~16,

Game G4. We now require that the adversary does not ask the oracle F with a query ending with K.
Since the outputs of F~! are completely random, the adversary has no choice but to guess K. Hence
the probability of this event is upper bounded by oz /2*.

Game G5. We now require the oracle F~! to explicitly abort if its reply ends with K. The adversary
can guess the unknown parts of X or T'@ K, respectively (he can not hope for collisions in X or T' due
to the transition in game G3). The probability of this event for all cases is upper bounded by o /2*.

Game Gg. We require II to abort if it produces such X J(i) that it is already in T». The probability of
this event is upper bounded by oror /2" 15, We note that the adversary can not manipulate X; with

M; since the choice is made before the X; is generated.

Game G7. In the same manner, we require F to abort if it is queried with an already generated X J@

and F~! to abort if it is queried with an already generated X ](Z) The probability of this event is upper
bounded by oroy /2716,

Game Ggs. Finally, we require II to abort if there is a collision in the set {Z(i)}i. Since every Z is the
XOR of uniformly generated Y; and Y/, the probability of this event is upper bounded by o /2" ~#~16 |

Let us now look at game Gg. The oracle II, in fact, never asks the oracle F with a query that
corresponds to an existing entry in 7. We ruled out such an event in games G4, G5 for the first layer of
encryption and the layer of the AD processing. We ruled out the event in games Gg, G7 for the second
layer of encryption. Finally, we ensure this for the authentication level in game Gg. The game Gj is
auxiliary.

The indistinguishability of the pair (ciphertext,tag) from a random string follows from the following
facts:

e all the Vj(i) inputs are distinct (nonce-misuse requirement);
e hence, all the values Wj(i) are chosen uniformly in Games Go—Gg;

e all the Z() values are distinct (Game Gg);
e all the tags T are chosen uniformly (and independently of ciphertexts) in Game Gs.

Therefore, Game Gy is indistinguishable from the interaction with the random-bit oracle. The adver-
sary’s advantage in Game Gy is upper bounded by the sum of transition probabilities in Games G1-Gsg,
which yields Equation (3.1)).

This concludes the proof. O

3.1.2 Ciphertext integrity

Theorem 2. Let an adversary be in the setting of Theorem[]. Suppose he makes q decryption requests
to II. Then his advantage of distinguishing II~1 from the “always-invalid” oracle L is upper bounded as
follows: ,

g o711
S5 + 5 + it + gh (3.2)
Proof. We first need to strengthen our setting. With probability Advcnonf(A) we are in Game Gg. Let
us make additional computations in Game Gy.

Let M be a plaintext to encrypt, and A be the associated data, Y (N, M) and Y’'(A) be intermediate
variables. Then for each encryption request (N, M, A) we also compute Y (N, M') and Y'(A’), for every
full-block prefix M’ of M and every full-block prefix A’ of A. We store all the resulting ¥ and Y’ in
special tables Y.,; and Y. ,. Let us note that the size of both tables is upper bounded by oyy.

Advil(A) < AdvEm(A) +

10



Game Gy. We additionally require II to explicitly abort if there are collisions in the set {Zg.:+ =
Y®Y'|Y € Yoy, Y' €Y/, }. The probability of this event is upper bounded by o3 /2n~*~16.

i

Lemma 1. Suppose we are in Game Gg. A walid decryption (N, A,C,T) request does not generate L
with probability upper bounded by
277 op /2" R0 12k,

Proof. There are four possible options:
1. Fresh nonce;
2. Old nonce, fresh ciphertext (not obtained with that nonce);
3. Old nonce, old ciphertext, fresh associated data;
4. Old nonce, old ciphertext, old associated data, fresh tag.

The last option clearly never succeeds.

Fresh nonce. Since N is fresh, the decryption request turns out to be a valid encryption request. Let
M’ be the plaintext of length |C| that consists of zero bits, and let C’ be its ciphertext under nonce
N. Then the decryption request (N, A,C,T) results in the encryption request (N, A,C @ C’), which
generates the tag uniformly at random according to Game Gg. Therefore, the probability to forge the
tag is upper bounded by 277.

Old nonce N, fresh ciphertext C. Let C’ be the ciphertext previously obtained with N. Consider
two cases.

1. C' is a prefix of C. Then Z is fresh due to requirements of Game Gg and is chosen uniformly at
random.

2. C' is not a prefix of C. Let j be any block index where C’ differs from C. By definition, the
variables X and X are distinct. There are two cases:

e The block X’[17...(n—k)] has been previously obtained with nonce N” as block X{[17... (n—
k)]. Only one such nonce could exist because of the requirements of Game G3. Since all X;
generated during encryption requests are sampled uniformly at random, the probability of
X = Xj is upper bounded by 1/2k.

e The block X}[17...(n—k)] has never been obtained before. Then Y (X}) is sampled uniformly
at random, and with probability /2" %716 generates a not-fresh Z.

Therefore, Z (and hence the tag) is chosen uniformly at random in all cases except one that has probability
1/2%. Thus probability to forge the tag in this case is upper bounded by

2—7’ + O_H/27L—k—16 + 1/2k

Old nonce N, old ciphertext C, fresh associated data A. Let Y’'(A) be the value obtained during
the processing of the associated data A. There are two options:

e Y'(A) = Y'(A?) for some previously queried A°. Due to requirements of Game Gy, the value
Y(N,C)®Y'(Ay) = Z(N,C, A) is fresh.
e Y'(A) is fresh. Then it generates a not-fresh Z with probability upper bounded by oy /27 ~*~16,
Therefore, the probability to forge the tag in this case is upper bounded by
97 4 opp /2" k=16,
This concludes the proof of lemma. O

Now we are ready to prove Theorem The requirements of Game Gy are fulfilled with probabil-

ity Adveeri(A) + FoF5. The first decryption request returns L with probability lower bounded in
Lemma [I] Then the adversary learns nothing with his request, and we can ignore filling the table T'r.
All the other requests have the same lower bound to be invalid, so we merely multiply this probability
by q.

This concludes the proof of Theorem O

11
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Figure 3.1: Rebound attack on AESQ.

3.1.3 Basic robustness to nonce misuse

In this section we investigate the level of robustness of PAEQ to nonce misuse, i.e. to the multiple use
of the same nonce(s) for encryption.

First, we note that confidentiality is almost destroyed in the case of nonce reuse. In fact, it is easy
for any person to compute a new ciphertext C’ for message M under the same nonce N, as

C'=MoeM aC.

However, with high probability the tag T is still indistinguishable from the random string, which
allows us to prove the integrity property in the case of nonce reuse, though with a worse bound.

Lemma 2. Suppose adversary A has access to I1[F|, F, and F~1, and let K S K. Let on be the total
number of queries to F made during the calls to the 11 oracle, and oF be the total number of queries to
F and F~ oracles together. The adversary is allowed to repeat nonces, but not to repeat plaintexts.

Then his advantage of distinguishing the tag T produced by the oracle II[F] from the random-bits
oracle $ is upper bounded as follows:

(0F +omn)?

AdvEM(A) <2 o

(3.3)
Proof. To prove this lemma, we follow the same games as in Theorems [[] and 2] The transitions from
Game Gg to G and G hold with the same probability.

The Game G35 is replaced with Game G%, where we require II to abort if there are collisions in
{X ;Z)[(n —k+1)...k]} for all used nonces and counter values. The probability of this event is upper
bounded by (o7 + op1)?/2F.

Games G4—G7 remain unmodified.

Finally, we unite Games Gg and Gg by requiring no collisions in Z.,;. Since all the pairs (plaintext,
associated data) are distinct and there is no collision in X[(n —k+1)...k] according to G%, every Z has
a fresh and uniformly chosen Y or Y’ in its XOR. Therefore, the upper bound on the collision event is
(o7 +om)?/2k.

As long as all Z are unique, the tags are uniformly generated. Therefore, the adversary’s advantage
is upper bounded by 2(cr + o)?/2". O

Now we can prove the same bounds for integrity.

Theorem 3. Let an adversary be in the setting of Lemma[d Suppose he makes q decryption requests
to II. Then his advantage of distinguishing II~ from the “always-invalid” oracle L is upper bounded as
follows:

(07 +om)?

Advit(A) <2 oF

(3.4)

12



Proof. The proof directly follows from Lemma [2| Since the adversary can not distinguish a tag from a
random string under repeating nonces, she can not create a forgery. Indeed, suppose that an adversary
B has advantage « of distinguishing II-! from the “always-invalid” oracle for a single query, i.e. she can
guess the tag with probability a. Then B can distinguish II from the random-bit oracle with the same
probability, which is in turn bounded in Lemma O

3.1.4 Extra nonce

The extra nonce N, is a function of P, K, and A. It invokes a sponge construction, which is proved
indifferentiable from random oracle up to 2¢/2 queries [B], where the parameter ¢ is equal to 2k in PAEQ
(and PPAE). The extra nonce function is thus pseudo-random and generates unique nonces unless it
reaches the birthday bound of 2"/2 queries (this is smaller than the 2* indifferentiability bound in this
submission). Therefore, the following statement holds.

Proposition 1. Let A be the adversary that makes q encryption queries (P, A) to the PPAE encryption

oracle Il with extra nonce feature. Let K EKandFE Perm(n). If, additionally, all the pairs (P, A)
are distinct, then the advante of the adversary to violate confidentiality or data integrity are bounded
2
q

2
by values given in Theorems and@ or max(ghy, 4= ), whatever is larger.

3.2 Security of AESQ

In this section we discuss the security of the AESQ permutation. We expect that the reader is familiar
with properties of the AES internal operations, and refer to [9] in case of questions.

3.2.1 Structure and decomposition

First we recall that one round of AES does not provide full
diffusion as it mixes together only 32 bits. For instance, con-

sider a column in the AES round that undergoes the Mix-
Columns transformation. Before that its bytes have been per-
muted by ShiftRows and substituted by SubBytes; afterwards i [t
they are xored with a subkey and again go through SubBytes and e I EEL:D I
ShiftRows. These operations can be grouped into a single 32-bit Hose
so-called “SuperSBox” parametrized with a 32-bit subkey. As a I ~ : gé: :
result, two AES rounds can be viewed as a layer SuperSubBytes of sabker ! T !
four 32-bit SuperSBoxes followed by ShiftRows and MixColumns, — &, gy
so that we can view AES-128 as a 5-round cipher with larger St
S-boxes. %

The same strategy applies to the AESQ permutation. The

two-round groups that process the registers A, B,C, D can be

viewed as a single round with 16 = 4 - 4 parallel SuperSBoxes Figure 3.2: SuperSBox in AES.
and a large linear transformation. This yields an R-round SPN

permutation with 32-bit S-boxes out of the original 2R-round one.

We can go further and view as many as four rounds of AESQ as a single round with MegaSBoxes (cf.
MegaBoxes in [8]). Indeed, refer to Figure and Algorithm Consider a 128-bit register in round
2, for instance register A. Let us first look at its input. Going into backward direction, the columns
spread to all the registers and then each column undergoes MixColumns without any influence from the
other parts of the register. Then the values are shuffled by ShiftRows, and finally updated byte-wise
by SubBytes. Hence we can recompute the 16 bytes at the beginning of round 1, even though they are
located in different registers. Let us now look at the register A at the end of round 3. Its columns
again spread to all the registers, and again undergo SubBytes and ShiftRows independently of the other
register bytes. As a result, we can view as many as four rounds as a layer MegaSubBytes of four 128-bit
MegaSBoxes followed by a MixColumns-based linear transformation, which we call MegaMixColumns. It
has branch number 5, as it is exactly a set of MixColumns transformations with reordered inputs and
outputs. Note that this decomposition must start with an odd round, and does not work for even rounds.
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Figure 3.3: MegaSBox in AESQ.

3.2.2 Analysis of permutations in the attack context

Only a few permutations as a single and secure object have been designed for the use in practical con-
structions. The most well-known is the Keccak 1600-bit permutation, which is used in the Keccak/SHA-3
hashing algorithm; the others are used in the SHA-3 competitors: CubeHash [4], Grostl [II], JH [I7].
It is worth noticing that a permutation per se can not be formally defined “secure”. The best we can
make is an informal statement like the 2! “flat sponge” claim [6], which basically states that no attack
with complexity below 2! and specific for the particular permutation exists. The parameter [ is used in
defining the capacity parameters in sponge functions and in fact measures the designers’ confidence.

In our case we claim [ = 256 or the 256-bit security of AESQ against all attacks. In order to support
our claim, we look at the existing attacks on permutation-based designs and check if they apply to AESQ.

Collision attacks. We first consider collision attacks on sponge-based hash functions. The collision
attacks on the reduced Keccak [I0] strongly rely on high-probability differential trails [I6], and only add
a couple of rounds over their length with the help of message-modification techniques. The so-called
internal-differential attack, while exploiting similarities within the internal state, is also limited by the
propagation of difference generated by the round constants. Hence to prevent these attacks we have to
demonstrate the absence of high-probability differential trails for a high number of rounds.

Let us now consider compression functions based on permutations. For example, Grostl uses functions

Pzoy)®Qy) @z and z& P(x),

where P and @ are AES-based permutations. The main strategy in collision attacks [14] 12] is the
construction of a truncated differential trail with low input and output Hamming weight. Then the
conforming inputs are found with the rebound attack and are tested for a collision.

Preimage attacks. The preimage attacks on sponge-based hash functions have been also based on
the differential properties of the permutation. As long as a differential generated by message difference
AM has high probability in some output bits, it can be used to speed up the preimage search [I5]. There
are also generic methods that can save a factor of several bits by exploiting incomplete diffusion in the
final rounds, but we note that their complexity can not be reduced much. The invariant attacks [2] do
not apply because of round constants.
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Preimage attacks on Grostl are based on the meet-in-the-middle framework. Whereas it is difficult
to formalize the necessary conditions for these attacks to work, we notice that the number of rounds
attacked with meet-in-the-middle/bicliques is smaller compared to the rebound attack (even though the
attack goals are distinct). Hence it should be sufficient to protect against rebound attacks.

Other attacks. A more generic set of attacks are given by the CICO and multi-CICO problems [6],
which require the attacker to find one or more (input, output) pair conforming to certain bit conditions.
There is no comprehensive treatment of these attacks, but they seem to be limited by twice the number
of rounds needed for full diffusion.

Consider an 8-round version F' of AESQ, for instance, that F(X) = Y, and we know the last 384
bits of both X and Y. How difficult is it to restore X and Y7 The last 384 bits mean three registers
B,C,D. Hence, we can compute registers B, C, D through rounds 0,1 and 6,7. Then we know 96 bits
of each register in the beginning of round 2 and in the end of round 5. By a simple meet-in-the-middle
attack we match between rounds 3 and 4 and recover X and Y with complexity 232. However, we did
not manage to extend this technique to more rounds.

3.2.3 Possible attacks

Differential analysis of AESQ. Let us evaluate the differential properties of AESQ. We are backed
up with the analysis of AES by Daemen and Rijmen. They prove the following lemmaﬂ

Lemma 3. Any differential trail over 4 AES rounds has at least 25 active S-bozxes.

We have demonstrated in Section that four rounds of AESQ can be viewed as a layer of 128-
bit S-boxes and a large linear transformation, which has branch number 5. The 128-bit MegaSBoxes
are exactly four-rounds of AES without the key additions and the last MixColumns. Hence each active
MegaSBox has at least 25 active S-boxes.

The branch number of MegaMixColumns implies that eight AESQ rounds starting from an odd round
have at least 5 active MegaSBoxes, and hence 125 active S-boxes. Therefore, nine rounds starting from
an even round (as required by the permutation) have at least 126 active S-boxes, as the first round must
have at least one. More generally, 8R + 1 rounds must have at least 125R + 1 active S-boxes. In turn,
the last round has at maximum 64 active S-boxes, so the lower bound for 8 R rounds is 125R — 63 active
S-boxes. The other bounds are given in Table

’ Rounds \ Active S-boxes H Rounds \ Active S-boxes ‘

2 5 8R+2 125R +2
4 10 8R+4 125R +7
6 27 8R+6 125R + 27
8R 125R-63 S8R+8 125R+-68

Table 3.1: Minimal number of active S-boxes in the AESQ permutation.

The table implies that a 20-round trail has at least 257 active S-boxes. Given that the maximal
differential probability of each S-box is 279, the vast majority of these trails have differential probability
equal to zero. The effect of clustering these trails into a single differential and the resulting probability
is not completely studied, but the bound of maximum expected differential probability for 4 rounds of
AES of 27113 [13] indicates that these values should be very low for 16 rounds of AESQ and more unless
the round constants accidentally admit a large number of conforming pair for a differential (the so called
height parameter).

If we consider slide-like attacks, where differences between registers or states shifted by several rounds
are considered, we obtain that the round constants generate one-byte difference in every round, so we
can not hope for high probability differentials in this case.

Rebound attacks. Rebound attacks aim to construct a conforming input for a truncated differential
trail with a little amortized cost. The attack consists of two phases: inbound phase, where a conforming
input is constructed for the low-probability part in the meet-in-the-middle manner, and the outbound

1 Actually, they prove a more general theorem for SPN ciphers but the AESQ permutation does not satisfy its assump-
tions.

15



phase, where the differences are traced through the rest of the primitive without the control of the
cryptanalyst.

Again, given the decomposition of AESQ into MegaSBoxes, we can generate a full difference dis-
tribution table for MegaSBoxes with the complexity 2256. Consider MegaSBoxes in rounds 5-8 of the
permutation. Let us select an active S-box in rounds 4 and 9, and select a one-byte difference in them.
Then we apply MegaMixColumns and obtain input/output differences for MegaSBoxes. We obtain ac-
tual state values and then recompute the difference in the outer directions. Active S-boxes in round 4
activates one MegaSBox in rounds 1-4, and then activates all the S-boxes of round 0. At the other end,
the active S-box in round 9 activates a MegaSBox in rounds 9-12, which activates all S-boxes in round
13. This yields a clear distinguisher for 12 rounds of AESQ with complexity 22°6, and possibly some
sort of distinguisher for 14 rounds, which should be compared to the distinguisher of the 8-round AES
permutation.

Final choice. We take the 20-round AESQ permutation within PAEQ, which should provide a 256-bit

security against all attacks. After the third-party cryptanalysis, if little improvement over our analysis
will be shown, we might consider reducing the number of rounds to 16 for 80- and 128-bit security.
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Chapter 4

Features

We offer PAEQ as an authenticated encryption scheme for heavyweight environments where AES opera-
tions are fast (e.g., on recent Intel/AMD CPUs). It allows very high security level up to 160 bits, which
is conveniently equal to the key length, in contrast to AES-based AE modes, which maximally allow 64
bits of security due to the birthday phenomenon. We offer three primary sets of parameters: paeq64,
paeq80, and paeq128, which provide 64, 80, and 128 bits of security, respectively, by having the key
and the tag of same length. We consider paeq80 and paeq128 secure for all practical applications, and
recommend paeq64 for protecting less sensitive information.

PAEQ allows to encrypt and decrypt the data on the arbitrary number of subprocessors with tiny
amount of shared memory. Those processors, threads, or other computation units may perform decryp-
tion and encryption of incoming blocks in any order.

PAEQ is based on the AES block cipher, and does not use any operations except those of AES. The
mode of operation around the AES-based permutation AESQ uses only XORs and counter increments,
and aims to be amongst easiest authenticated encryption modes to implement.

4.1 List of features

In this section we provide an extensive list of features of PAEQ. We have tried to make the mode as
universal as possible, and to provide the users with almost every capability an authenticated encryption
mode might have.

Key/nonce/tag We allow keys, nonces, and tags of arbitrary length, as long as they fit into

length the permutation, fulfill some minimal requirements, and constitute the integer
number of bytes.

Performance Depending on the key size, the encryption speed is about 7 cycles per byte on
modern CPUs with permutation AESQ.

Security level Depending on the key length and the permutation width, we support a range

of security levels from 64 to 256 bits. For the permutation of width n bits we
can use a key of about (n/3 — 6) bits and get the same security level for both
confidentiality and ciphertext integrity. Hence a permutation of 400 bits width
already delivers a security level of 128 bits.

Security proof Our mode is provably secure in the random permutation model, whereas the
security proof is short and verifiable by the third parties.

Parallelism Our scheme is fully parallelizable: all blocks of plaintext and associated data
can be processed in parallel; only the last call of the permutation needs all the
operations to finish.

Online processing Our scheme is fully online, being able to process plaintext blocks or blocks of
associated data as soon as they are ready without knowing the final length.
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Patents It is not patented, and we are not aware of any patent covering any part of the

submission.

Tag update If the tag is not truncated, then the last permutation call can be inverted

given the key, and only two extra permutation calls are needed to encrypt and
authenticate a new plaintext with one new block.

Inverse The permutation is used in the forward direction only, with a sole exception of

tag update, if this feature is needed.

Nonce misuse If the nonce is reused, then the integrity is still provided. Additionally, a user

may generate a nonce out of the key, the plaintext, and the associated data
with a dedicated routine.

4.2 Advantages over other ciphers

The
1.

scheme has the following advantages over AES-GCM:

It provides higher security levels up to 160 bits, with the key length being equal to the security
level.

Its mode of operation contain only simple operations as XOR, which allows for clear structure and
easier and verifiable security proofs.

It preserves the integrity feature in the case of nonce misuse, and provides an extra feature of
generating an input-based nonce in the environment where the nonce uniqueness can not be guar-
anteed.

. It allows plaintexts and associated data as long as 2° bytes, which in practice means no restrictions

at all for the foreseeable future.

Compared to other AE designs, we highlight the following features of our scheme:

Designs that use the AES cipher (COPA [I], COBRA, OTR) can not deliver a security level higher
than 64 bits due to the birthday phenomena at the 128-bit AES state. In contrast, PAEQ easily
brings the security level of 128 bits and higher.

The extra nonce feature that mitigates a nonce-misuse environment does not come at the cost of
hardening the mode, but rather is a dedicated routine that affects performance only when called.

PAEQ achieves the maximum level of parallelism, as it can process incoming plaintext and asso-
ciated data blocks in any order and needs only 512 bits of memory to store intermediate results
(apart from the ciphertext). In contrast, COPA [I] needs to process all the preceding blocks to
produce a ciphertext block.

It is one of the very few schemes that allows the incremental tag update.
It does not need the permutation inverse as long as the tag update feature is not used.

Thanks to the permutation-based mode of operation, PAEQ uses only XOR and concatenation
operators, which makes the design and security proof much easier to understand and less prone to
bugs.
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Chapter 5

Design rationale

5.1 Design of PPAE

When creating the new scheme, we pursued the following goals:
e Offer high security level, up to 128 bits, ideally equal to the key length,
e Make the mode of operation simple enough to yield compact and reliable security proofs.
e Deliver as many features as possible.

To achieve these goals, we decided to trade performance for clarity and verifiability.

Existing block ciphers were poor choice for these goals. They commonly have a 128-bit block, which
almost inevitably results in the loss of security at the level of 264 cipher calls. The 256-bit cipher Threefish
could have been used, but the lack of cryptanalysis in the single-key model makes it a risky candidate.
Our mode of operation would be also restricted to a single cipher.

Instead, we constructed a permutation-based mode, which takes a permutation of any width if it
is at least twice as large as the key. This choice makes the scheme much more flexible, allows for
variable key and nonce length, and simplifies the proof. The key update also becomes very easy. The
downside of the permutation-based approach is that the security proof has to be devised in the random
oracle/permutation model, and does not rely on the PRP assumption. This is inevitable, but the success
of the sponge-based constructions tells that it is not necessarily a drawback.

For the encryption stage we have chosen an analogy with the CTR mode, so that we do not have
to use the permutation inverse. It also allows us to truncate some parts of the intermediate variables.
For the authentication stage we use a parallel permutation-based construction. It takes the yet unused
secret input from the encryption stage, which provides pseudo-randomness.

It remains to choose a permutation. Initially we thought of using a family of permutations with
different widths. Examples could be Keccak [6], Spongent [7], or Quark [3] permutations. However,
the performance loss would be too high given two invocations of a permutation per plaintext block.
Instead, we designed our own permutation which shows the best performance on modern CPUs. It can
be used in other permutation-based constructions, e.g. the extended Even-Mansour cipher or the sponge
construction.

5.2 Design of AESQ

When designing AESQ, we needed a permutation wide enough to accomodate 128-bit keys and nonces.
The AES permutation would be too short, while AES-based permutations used in the SHA-3 context
would be too large or not well optimized for AES instructions on modern CPUs.

We decided to run 4 AES states in parallel and regularly shuffle the state bytes. Since two AES
rounds provide full diffusion, the shuffle should occur every two rounds. The shuffle operation should
make each state to affect all four states, resembling the ShiftRows transformation in AES. The recent
Intel processors, along with dedicated AES instructions, provide a set of instructions that interleave the
32-bit subwords of 256-bit registers. Those subwords are columns of the AES state, so we shuffled the
columns. The shuffle function in this submission is one of the permutations that provide full diffusion
and needs the minimal 8 number of processor instructions.
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5.3 No weakness

The designers have not hidden any weaknesses in this cipher.
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Chapter 6

Implementation

We provide a portable reference implementation of PAEQ in C++. Now it consists of a single file
encrypt.cpp. It contains the following functions:

e crypto_aead_encrypt is the standard encryption routine.
e crypto_aead_decrypt is the standard decryption routine. It returns —1 as L.

e crypto_aead_encrypt_no_nonce performs encryption with the extra nonce option. It calls GenerateNonce
and writes the output to the npub input parameter.

e FPerm applies the AESQ permutation to the 512-bit input.
e GenerateNonce generates the extra nonce out of the plaintext, the key, and the associated data.

e AES_Round applies the AES operations SubBytes, ShiftRows, and MixColumnsto the 128-bit state.
This function is used within the AESQ permutation.

e genKAT generates key, nonce, plaintext, and associated data of given length in deterministic way,
performs encryption and decryption, and writes all the inputs to the log file out.log. This function
should help implementing PAEQ on other platforms.

e gmul_o is an auxiliary function that performs multiplication in GF'(256).

e Init initializes the multiplication table in GF(256), which is used for AES operations. This
function must be called before the first call of FPerm (it is done in encryption and decryption
routines).

e main calls genKAT().

e FPermAsm is the assembler-optimized version of FPerm. It works on Windows platform only and is
disabled for portability.

6.1 Performance of AESQ

Our permutation is best suited for the last Intel and AMD processors equipped with special AES instruc-
tions. Of the AES-NI instruction set, we use only AESENC instruction that performs a single round of
encryption. More precisely, AESENC(S, K) applies ShiftRows, SubBytes, and MixColumnsto S and then
XORs the subkey K. In our scheme the subkey is a round constant. For two rounds of AESQ, we use
the following instructions:

e 8 aesenc instructions for AES round calls;
e 8 vpunpckhdq instructions to permute the state columns between registers;

e 8 vpaddq instructions to update round constants.
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This gives a total of 24 instructions per 64 bytes of the state in two rounds. This means that the full
2R-round AESQ permutation needs 24 R instructions, and theoretically may run in 3R/8 cycles per byte
if properly pipelined. This speed may be achieved in practice, since the throughput of AES instructions
is 1 cycle starting from the Sandy Bridge architecture (2010), and the vpaddq instruction may be even
faster. The following strategy gives us the best performance on the newest Haswell architecture:

e Process two 512-bit states in parallel in order to mitigate the latency of 8 cycles of the AESENC
instruction. Store each state into 4 xmm registers.

e Store round constants in 4 xmm registers and use them in the two parallel computations.

e Use one xmm register to store the constant 1 to update the round constants, and one temporary
register for the Shuffle operation.

We note that on the earlier Westmere architecture the AESENC instruction has latency 6 and throughput
2, hence the AES round calls should be interleaved with mixing instructions conducted on several parallel
states.

We have made our own experiments and concluded that the 16-round version of AESQ (R = 8) runs
at 2.4 cycles per byte on a Haswell-family CPU, whereas the 20-round version runs at 3 cycles per byte.
This can be compared to the speed of the Keccak-1600 permutation. As eBASH reports, on a Haswell
CPU the Keccak hash function with rate 1088 runs at 10.6 cpb, which implies that the full 1600-bit
permutation runs at approximately % = 7.2 c¢pb. Therefore, the 20-round AESQ is 2.5 times as
fast as Keccak-1600.

6.2 Performance of PAEQ

The current submission provides an optimized implementation of AESQ only, but not of PAEQ. To
achieve the highest throughput of AESQ calls, an optimized implementation should call two AESQ
instances in parallel. This would allow for the total throughput 1. Given that AESQ runs at 3 cpb, we
conclude that paeq64 should run at about 7 cpb, and paeq128 — at 8 cpb.
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Chapter 7

Intellectual property

The authors are aware of no known patents, patent applications, planned patent applications, and other
intellectual-property constraints relevant to use of the cipher.

If this information changes, the submitter will promptly (and within at most one month) announce
these changes on the crypto-competitions mailing list.

23



Chapter 8

Consent

The submitter hereby consents to all decisions of the CAESAR selection committee regarding the selec-
tion or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist,
a member of the final portfolio, or any other designation provided by the committee. The submitter
understands that the committee will not comment on the algorithms, except that for each selected algo-
rithm the committee will simply cite the previously published analyses that led to the selection of the
algorithm. The submitter understands that the selection of some algorithms is not a negative comment
regarding other algorithms, and that an excellent algorithm might fail to be selected simply because
not enough analysis was available at the time of the committee decision. The submitter acknowledges
that the committee decisions reflect the collective expert judgments of the committee members and are
not subject to appeal. The submitter understands that if he disagrees with published analyses then he
is expected to promptly and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitter understands that this statement is required as a condition of consideration of
this submission by the CAESAR selection committee.
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