π -Cipher 1

Designers: Danilo Gligoroski 2 and Hristina Mihajloska 3 and Simona Samardjiska 23 and Håkon Jacobsen 2 and Mohamed El-Hadedy 2 and Rune Erlend Jensen 4

Submitter: Hristina Mihajloska hristina.mihajloska@finki.ukim.mk

Update to π -Cipher v2, November 2014

 $^{^1}$ Since, the name of the cipher contains the Greek letter π , in the software implementations we will use the name PiCipher. More precisely in this document we propose the following six variants of the cipher: Pi16Cipher096v2, Pi16Cipher128v2, Pi32Cipher128v2, Pi32Cipher256v2, Pi64Cipher128v2, Pi64Cipher256v2

²ITEM, Norwegian University of Science and Technology, Trondheim, Norway

³FCSE, "Ss Cyril and Methodius" University, Skopje, Republic of Macedonia

⁴IDI, Norwegian University of Science and Technology, Trondheim, Norway

Update from π -Cipher v1

This document is the summary of the updates from v1 to v2 of the π -Cipher documentation.

Update in Chapter 1. Specification

This chapter contains correction on the padding rule that leads to easy forgery strategy as it was pointed out by Gaëtan Leurent and Thomas Fuhr [1].

In Version 1, the padding rule for the last block of the AD is the following:

$$AD_a \leftarrow \begin{cases} AD_a & \text{if } |AD_a| = bitrate, \\ AD_a||10^* & \text{if } |AD_a| < bitrate, \end{cases}$$

where 1 represents the byte 0x01, and 0 represents the byte 0x00.

In Version 1, the padding rule for the last block of the message M is the following:

$$M_m \leftarrow \begin{cases} M_m & \text{if } |M_m| = bitrate, \\ M_m||10^* & \text{if } |M_m| < bitrate, \end{cases}$$

where 1 represents the byte 0x01, and 0 represents the byte 0x00.

In order to solve the issue pointed out in [1] we modify the padding rule as following: "Append 1 in any case, and fill the rest of the block with 0s". Thus, the changes will be: The padding rule for the associated data AD is the following:

$$AD = AD_1 ||AD_2|| \dots ||AD_a|| 10^*$$

where 1 represents the byte 0x01, and 0 represents the byte 0x00.

The padding rule for the message M is the following:

$$M = M_1 ||M_2|| \dots ||M_m|| 10^*$$

where 1 represents the byte 0x01, and 0 represents the byte 0x00.

Note that if the associated data AD (the message M) has length that is a multiple of the *bitrate*, then the number of processed blocks of AD (M) is increased by one, and thus $a \leftarrow a + 1$ ($m \leftarrow m + 1$).

Update in Chapter 4. Features

In this chapter we give clarification about the feature *Tag second preimage resistance* - resistance against finding second preimage for an authentication tag when the key is known (insider attack) for short messages.

Acknowledgment

We would like to thank Gaëtan Leurent and Thomas Fuhr for their detailed observation on the π -Cipher, pointing out the problem with the padding function in v1, and giving us a note for removing a bug in the reference C code.

References

[1] Gaëtan Leurent and Thomas Fuhr. Observation on picipher. Message on the cryptocompetitions mailing list, November, 2014.