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“I would define, in brief, the poetry of words as the
rhythmical creation of beauty.”

– Edgar Allen Poe (The Poetic Principle)
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Executive Summary

There is a compelling need for On-Line Authenticated Encryption (OAE) schemes that
are fast, secure, flexible, and robust against misuse all at the same time. This work
proposes POET (Pipelineable On-line Encryption with authentication Tag), a family of
OAE schemes which satisfies all the mentioned properties. At its core, POET grounds on
the POE family of on-line ciphers (Piplineable On-line Encryption).

POET is fast. Its throughput is comparable to that of reference authenticated ciphers,
such as OCB3 or AES-GCM, which lack the robustness provided by POET. When instan-
tiated with the AES and Galois-Field multiplication, POET processes messages at a speed
of 3.9 clock cycles per byte per core. Moreover, POET introduces a minimal overhead
of only two additional block-cipher calls to generate the authentication tag. For an effi-
cient transmission, POET only transfers the additional tag, avoiding any overhead at the
message.

POET is robust. The standard security notions for AE schemes – which POET satisfies
up to the birthday bound – assume adversaries to behave “nonce-respectingly”, and to
ignore decrypted ciphertexts if the authentication fails. Almost all previous AE schemes
are insecure whenever these assumptions are violated. This is a highly relevant and greatly
underestimated practical issue. POET addresses it by providing security even under both
“nonce misuse” and “decryption misuse”.

POET is provably secure. POET bases on well-studied primitives, which simplifies the
formal analysis greatly. We provide a security proof, making standard assumptions on the
block cipher’s security.

POET is flexible. POE and POET are ready-to-use for a variety of applications. We
provide a fully generic specification to allow programmers to choose primitives that are
tailored to their use case. As a recommendation, we propose the AES as block cipher, and
either four-round AES, Galois-Field multiplications, or the full AES for universal hashing.
As a desirable side effect of our recommendation, we are convinced that POET can be
standardized seamlessly.

POET is efficient on a variety of platforms. POET is well-suited for low-end applica-
tions, especially when the AES is used for both encryption and universal hashing, which
reduces code size and chip space. Mid-range and high-end devices can run POET effi-
ciently thanks to pipelining. In general, software implementations benefit from the wide
availability of AES- and/or Galois-Field native instructions on current platforms. For
high-throughput applications, and massively parallelized hardware implementations in
particular, we propose a special variant, called POET-m, where m determines the level of
parallelism.
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Chapter 1
Introduction

On-Line Authenticated Encryption. (On-Line) Authenticated Encryption (AE) schemes
are block cipher modes of operations that protect both privacy and integrity of transmitted
messages. Most existing block-cipher based AE schemes, such as EAX [7], GCM [36], or
OCB3 [35] are provably secure against nonce-respecting adversaries; however, they fail
badly when nonces are re-used.

Robustness against Nonce-Misuse. The standard requirement for encryption schemes
is to prevent leaking any information about plaintexts except their length. A stateless
deterministic encryption scheme enables an adversary to decide if a plaintext has been
encrypted multiple times or not. As a countermeasure, a cryptosystem is usually defined
as a deterministic algorithm that requires a user-supplied state (i.e., a nonce). Thus, the
application programmer is responsible for maintaining the state, which reflects the common
practice since the algorithm itself is often implemented by a multi-purpose cryptographic
library.

In theory, the concept of nonces is simple. In practice, flawed implementations of nonces
are ubiquitous [13, 27, 33, 49]. Apart from implementation failures, there are fundamental
reasons why software developers cannot always prevent nonce-reuse. A persistently stored
counter, which is increased and written back each time a new nonce is needed, may be
reseted by a backup – usually after some previous data loss. Similarly, the internal and
persistent state of an application may be duplicated when a virtual machine is cloned.

Most currently used AE schemes neither protect the privacy nor the integrity of messages
when nonces repeat [21]. In particular, the security of counter-mode-based schemes falls
apart completely.

A modern AE scheme should provide a second line of defense under nonce misuse, i.e., a
decent level of security even when nonces repeat.

Robustness against Decryption Misuse. Standard AE security notions assume that an
adversary learns nothing about the would-be message whenever a ciphertext fails the
authenticity check. This is inherent in the idea of authenticated encryption and part of its
strength. Similar to the nonce-misuse setting, this concept is simple in theory, but hard
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to ensure in practice.

Beyond limiting the damage in the case of implementation failures, there is also another
reason for considering decryption misuse for AE schemes. Sometimes, it is just not possi-
ble to store the entire would-be message on a decryption device before its authenticity has
been checked. This may be due to plain lack of memory, or due to demanding performance
requirements (e.g., high speed, low latency, and long messages). One example for such set-
tings are Optical Transport Networks (OTNs) [28]. In such environment, the links between
multiple network channels must be capable of transmitting, multiplexing, and switching
between massive data streams in a fast and secure manner. OTNs are characterized by
high throughput rates of up to 100 Gbps, low latencies in the order of a few clock cycles,
and large message frames of up to 64 kB. At that size, a mode of operation using a 128-bit
block cipher would require about 4,096 block cipher invocations to complete a decryption,
introducing a latency that exceeds the minimum latency goal of OTNs by far.

In such cases, one can choose between two approaches: One could simply pass the de-
crypted message before the authenticity was checked – which solves the latency and caching
issues. However, under such conditions, most AE schemes can no longer sustain neither
the privacy nor the integrity of messages. As an alternative, Fouque et al. [23] proposed
to mask the plaintext with an intermediate key before releasing it, and only passing the
correct key to the receiver after the message was successfully verified. This practice solves
the caching and security issues, but still suffers from high latency.

Thus, there is a practical need for AE schemes that provide a second line of defense under
decryption misuse, i.e., a decent level of security, even when decryptions of non-authentic
ciphertexts have been compromised.

Intermediate Tags. An AE scheme based on a CCA-secure on-line cipher (OPERM-CCA-
secure, hereafter) provides an additional desirable feature: The seamless integration of
intermediate tags [9]. This can be achieved by adding well-formed redundancy (e.g., fixed
constants or non- cryptographic checksums) to the plaintexts. For instance, the headers
of IP, TCP, or UDP [41, 42, 40] packets contain a 16-bit checksum each, which is verified
by the receiver and/or network routers. In OTNs, a single 64-kB message frame usually
consists of multiple IP packets. Due to the low-latency constraints, receiving routers are
not allowed to buffer incoming messages and must forward the first packets towards their
destination. However, they can test the validity of the individual packet’s checksum to
efficiently detect forgery attempts. OPERM-CCA-security ensures that the first TCP/IP
packet with an invalid CRC-16 checksum only passes with a probability of at most 2−16.
Even if this packet passes, the next packet would again only pass with the same probability
and so on and so forth.

POET in a Nutshell. This work introduces the first non-sequential robust1 on-line AE
scheme, called Pipelineable On-line Encryption with authentication Tag (or POET here-
after), which is based on an OPERM-CCA-secure family of on-line ciphers, called Pipeline-
able On-line Encryption (POE). POE and POET consist of an ECB layer that is protected
by two wrapping layers of chaining with an ǫ-AXU family of hash functions. The prop-
erty of pipelineability distinguishes POET from previous CCA-secure on-line ciphers (e.g.,

1By robust, we mean resistance against both nonce-misuse and decryption-misuse.
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TC3 [47]), which are inherently sequential. Thus, it significantly increases the through-
put on multi-core systems with integrated AES-NI, and also allows to utilize single-core
processors more efficiently. In addition, we propose a generalized version, called POET-m,
where m reflects the level of parallelism. POET-m follows a slightly more complex struc-
ture than POET. For m ≥ 2, it can lead to increased software and hardware performance
on high-end systems, but only at the cost of using the inverse of the universal hash function
family. Note that our recommended version of POET is identical to POET-1.

We define POE and POET in a generic way, allowing the user to choose well-suitable in-
stances for the cipher and the hash function. For concreteness, we propose three instances
which use the AES-128 as block cipher and (1) Galois-Field multiplication, (2) four-round
AES-128, or (3) full AES-128 for universal hashing.

Outline

The remainder of this work is structured as follows. In Chapter 2 we give a brief overview
over our design goals and the distinguishing features of POET. Next, Chapter 4 recalls the
necessary preliminaries about universal hash functions, on-line ciphers, and AE schemes
that are used in the subsequent parts of this work. In Chapter 5 we define the relevant
security notions used in our work, and in Chapter 6, the specification of POET. Chapters 8
and 8.3 are devoted to the security analysis. Next, Chapter 9 provides details on imple-
mentational aspects and performance evaluation of POET. Chapter 10 contains our design
rationale. Finally, chapters 11,12, and 13 contain acknowledgements, and the obligational
statements regarding intellectual property and consent.
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Chapter 2
Features

Length-Preserving Encryption. POET processes messages of arbitrary length in a length-
preserving manner, i.e., it encrypts m-bit plaintexts to m-bit ciphertexts, without append-
ing any padding. This functionality is especially useful for (battery-powered) resource-
constrained devices, where the transmission of bits is costly.

On-Line. POET provides on-line encryption and decryption, i.e., it can process the i-th
input block before the (i + 1)-th block has been read.

Authentication of Associated Data of Arbitrary Length. POET allows to authenticate
associated data (or header, hereafter) of arbitrary length, including the empty string.
Since the result of the header-processing step is required as an input parameter for the
tag-generation process, POET appends the public message number nonce and pads the
given header with a standard 10* padding. Thus, the POET approach renders the entire
header into a nonce.

In theory, POET could employ any secure MAC to process the header. Among the variety
of existing constructions, we borrow the provably secure PMAC design which allows to
process the header blocks in arbitrary and parallelizable order to reduce the latency on
multi-core CPUs.

Support For Intermediate Tags. POET offers built-in support for intermediate tags
when messages already contain some well-formed redundancy, e.g., fixed constants or non-
cryptographic checksums. Therefore, POET is well-suited for low-latency environments,
such as OTNs, where messages usually consist of multiple TCP/IP packages with inte-
grated (although small) checksums. Note that non-cryptographic intermediate tags lack
the level of security of cryptographic authentication tags.

Variable Tag Lengths. While we recommend tags of the block cipher’s state size n,
POET also provides limited support for truncated tags. Network protocols – such as
TLS 1.x [17, 18, 19] or IPSec [1, 32] – usually employ authentication tags of 96 bits. For
messages whose length is a multiple of n, POET provides full flexibility to choose tag sizes.
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In the other case, tags can still be truncated but only with the requirement that tag and
final message block should sum up to at least n bits. Note that this complies with the
TLS and IPSec protocol suites.

Incremental Updates For The Header. POET supports incrementality for the header,
i.e., the tag can be efficiently recomputed with only ℓ + 1 block-cipher calls when ℓ header
blocks change.

Performance. Our recommended instance of POET is the AES and/or Galois Field mul-
tiplication. Therefore, POET can benefit greatly from the available native instruction sets
of current processors. PMAC provides POET with a maximum of parallelism when the
header is processed. For the message encryption and decryption, POET requires only a
single block-cipher and two hash-function calls per message block. The non-sequential
design of POET allows to efficiently process subsequent message blocks exploiting the
CPU pipeline and multi-threading techniques. An optimized implementation of POET by
Bogdanov et al. [12] can already process a single message at a speed of about 3.9, and
multiple messages at a speed of about 2.1 clock cycles per byte per core.

Comparison to GCM. Like GCM, POET is an efficient OAE scheme. However, in con-
trast to GCM, POET supports resistance against nonce and decryption misuse wheraes
the security of GCM totally falls apart when a nonce is used at least twice. Finally, POET

is a CCA-secure on-line cipher wheras GCM is only CPA-secure.
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Chapter 3
Security Goals

The security claims for POET are given in Table 3.1.

Security in Bits Maximal # of Blocks

Goals GF AES-4 Full AES GF AES-4 Full AES

Plaintext confidentiality 128 128 128 ≪ 264 ≪ 256 ≪ 264

Plaintext integrity 128 128 128 ≪ 264 ≪ 256 ≪ 264

Associated data integrity 128 128 128 ≪ 264 ≪ 256 ≪ 264

Nonce integrity 128 128 128 ≪ 264 ≪ 256 ≪ 264

Table 3.1.: Security claims (left) and maximum number of blocks under a single key (right) for our
recommended versions of POET. All versions use the AES as block cipher E. The ǫ-AXU family
of hash functions F is given by a Galois-Field multiplication in GF (2128) for “GF”, by four-round
AES for “AES-4”, and the full-round AES for “Full AES”.

POET does not intent to support secret message numbers, i.e., the length of secret message
numbers is 0 bits. Our three recommended instantiations of POET all use the AES-128
as block cipher. Hence, the block size for message blocks, header blocks, and nonce is 128
bits. The recommended tag size for all recommended instantiations is 128 bits.

POET is designed to provide robustness against nonce misuse, i.e., POET maintains full
integrity and confidentiality, except for leaking collisions of the longest common prefix
of messages. Furthermore, it provides robustness against decryption decryption misuse,
where it maintains on-line confidentiality.

For all instantiations of POET, we assume that the legitimate key holder does not approach
about 2−ǫ/2 blocks encrypted under a single key.
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Chapter 4
Preliminaries

This section introduces the general notions that are used throughout this work. Table 4.1
summarizes the most frequently used identifiers.

Identifier Description

C Ciphertext
E/E−1 Cipher (encryption function)/Inverse cipher
F Function, mostly universal hash function
H Header (= associated data)
K Cipher key
L Key for header processing
LM Key for processing the last message block
LT Key for tag generation

Ltop
F ,Lbot

F Keys for the ǫ-AXU family of hash functions F
M Plaintext message
N Public message number (= initial value/nonce)
SK User-given secret key
T Authentication tag
τ Header tag
n Block length in bits
k Key length in bits
|X | Length of X in bits
Xi i-th block of a value X
X i The i-th element of a set
X || Y Concatenation of two values X and Y
X || 10∗ Value X with a single ‘1’-bit appended, and then padded with

zeros until its length is a multiple of n
X Set or family X

X
$
←− X X is a uniformly at random chosen sample from X .

Table 4.1.: Notions used throughout this paper.

In general, we write uppercase letters to denote functions, parameters, or values (e.g., M ,
C, E), lowercase letters to denote lengths (e.g., n, k), and calligraphic uppercase letters
to represent sets or families of functions (e.g., F).
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4.1. Universal Hash Functions

For POET we make extensive use of the well-studied properties of universal hash-function
families. In this section, we start with recalling the relevant standard definitions from the
literature by Carter and Wegman [15, 54]; thereupon, we restate the theorem related to
these functions by Boesgaard et al. [11], and their composition by Stinson [51, 52].

Definition 4.1 (ǫ-Almost-(XOR-)Universal Hash Functions). Suppose, F = {F :
{0, 1}m → {0, 1}n} is a family of hash functions. F is called ǫ-almost- universal (ǫ-AU)
iff for all X, X ′ ∈ {0, 1}m, X 6= X ′:

Pr[F
$
←− F : F (X) = F (X ′)] ≤ ǫ.

F is called ǫ-almost-XOR-universal (ǫ-AXU) iff for all X, X ′ ∈ {0, 1}m, Y ∈ {0, 1}n,
X 6= X ′:

Pr[F
$
←− F : F (X) ⊕ F (X ′) = Y ] ≤ ǫ.

The definition of strong universal hash functions is similar.

Definition 4.2 (Strong Universal Hash Functions). Suppose F = {F : {0, 1}m →
{0, 1}n} is a family of hash functions. F is called strong- universal (SU) iff for all X ∈
{0, 1}m, Y ∈ {0, 1}n:

Pr[F
$
←− F : F (X) = Y ] ≤ 1/2n,

and for all X, X ′ ∈ {0, 1}m with X 6= X ′ and Y, Y ′ ∈ {0, 1}n :

Pr[F
$
←− F : F (X) = Y, F (X ′) = Y ′] ≤ 1/22n.

Boesgaard et al. showed in [11] that an ǫ-AXU family of hash functions can be reduced
to a family of ǫ-AU hash functions by XORing an arbitrary value to the output:

Theorem 4.3 (Theorem 3 from [11]). Let F = {F : {0, 1}m → {0, 1}n} be a family
of ǫ-AXU hash functions. Then, the family F ′ = {F ′ : {0, 1}m × {0, 1}n → {0, 1}n} with
F ′(X, Y ) = F (X)⊕ Y is ǫ-AU.

The effects of composing two universal hash function instances were studied by Stinson in
[51, 52].

Theorem 4.4 (Theorem 5.4 from [52]). Let F = {F : {0, 1}m → {0, 1}n} be an ǫ1-
AU family of hash functions and G = {G : {0, 1}n → {0, 1}ℓ} an ǫ2-AU family hash
functions. Then, there exists an ǫ-AU family of hash functions H with ǫ ≤ ǫ1 + ǫ2 and
|H| = |F| × |G|.
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4.2. Block Ciphers

A block cipher is a keyed family of n-bit permutations E : {0, 1}k × {0, 1}n → {0, 1}n,
which takes a k-bit key K and an n-bit message M , and outputs an n-bit ciphertext
C. We denote Block(k, n) as the set of all (k, n)-bit block ciphers for n > 0. For any
E ∈ Block(k, n) and a fixed key K ∈ {0, 1}k , the encryption of a message M is given by
EK(M), and the decryption is defined as the inverse function, i.e., E−1

K (M). For any key
K ∈ {0, 1}k , it applies that E−1

K (EK(M)) = M .

We define the IND-SPRP-security of a block cipher E by the success probability of an ad-
versary trying to differentiate between the block cipher and an n-bit random permutation
π(·).

Definition 4.5 (IND-SPRP-Security). Let E ∈ Block(k, n) denote a block cipher and
E−1 its inverse. Let Permn be the set of all n-bit permutations. The IND-SPRP advantage
of A against E is then defined by

AdvIND-SPRP

E,E−1 (A) ≤
∣

∣

∣Pr
[

AE(·),E−1(·) ⇒ 1
]

− Pr
[

Aπ(·),π−1(·) ⇒ 1
]∣

∣

∣ ,

where the probabilities are taken over K
$
←− {0, 1}k and π

$
←− Permn. We define

AdvIND-SPRP

E,E−1 (q, t) as the maximum advantage over all IND-SPRP-adversaries A on E that
run in time at most t and make at most q queries to the available oracles.

4.3. On-Line Ciphers

Definition 4.6 (On-Line Cipher). Let Γ : {0, 1}k × ({0, 1}n)∗ → ({0, 1}n)∗ denote a
keyed family of n-bit permutations, which takes a k-bit key K and a message M of an
arbitrary number of n-bit blocks, and outputs a ciphertext C consisting of the same number
of n-bit blocks as M . We call Γ an on-line cipher iff the encryption of message block Mi,
for all i ∈ [1, |M |/n], depends only on the blocks M1, . . . , Mi.

Usually, a secure cipher that processes messages of arbitrary length should behave like a
random permutation. It is easy to see that on-line ciphers are in conflict with this security
property since the encryption of message block Mi does not depend on Mi+1. The on-
line behavior implies that two messages M and M ′, which share an m-block common
prefix, will always be encrypted to two ciphertexts C and C ′, which also share an m-
block common prefix. Hence, we define an on-line cipher Γ to be secure if and only if no
ciphertext reveals any further information about a plaintext than its length and the longest
common prefix with previous messages. We recall the formal definition of the length of
the longest common prefix of a message from [21].
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Definition 4.7 (Length of Longest Common Prefix). For integers n, ℓ, d ≥ 1, let
Dd

n = ({0, 1}n)d denote the set of all strings that consist of exactly d blocks of n bits each.
Further, let D∗n =

⋃

d≥ 0D
d
n denote the set which consists of all possible n-bit strings and

Dℓ,n =
⋃

0≤ d≤ ℓD
d
n the set of all possible strings which consist of 0 to ℓ n-bit blocks. For

arbitrary P ∈ Dd
n, let Pi denote the i-th block for all i ∈ 1, . . . , d. For P, R ∈ D∗n, we define

the length of the longest common prefix of n-bit blocks of P and R by

LLCPn(P, R) = max
i
{∀j ∈ 1, . . . , i : Pj = Rj} .

For a non-empty set Q of strings in D∗n, we define LLCPn(Q, P ) by

max
q ∈Q

{LLCPn(q, P )} .

For any two ℓ-block inputs M and M ′ with M 6= M ′, that share an exactly m-block
common prefix M1 || . . . || Mm, the corresponding outputs C = P (M) and C ′ = P (M ′)
satisfy Ci = C ′i for all i ∈ [1, m] and m ≤ ℓ, where P denotes an on-line permutation.
However, it applies that Cm+1 6= C ′m+1 and all further blocks Ci and C ′i, with i ∈ [m+2, ℓ],
to be independent. This behavior is defined by on-line permutations. We recall their
definition in the following.

Definition 4.8 (On-Line Permutation). Let Fi : ({0, 1}n)i → {0, 1}n be a family of
indexed n-bit permutations, i.e., for a fixed index j ∈ ({0, 1}n)i−1 it applies that Fi(j, ·)
is a permutation. We define an n-bit on-line permutation P : ({0, 1}n)ℓ → ({0, 1}n)ℓ as a
composition of ℓ permutations F1 ∪ F2 ∪ . . . ∪ Fℓ. An ℓ-block message M = (M1, . . . , Mℓ)
is mapped to an ℓ-block output C = (C1, . . . , Cℓ) by

Ci = Fi(M1 || . . . || Mi−1, Mi), ∀i ∈ [1, ℓ].

We denote by OPermn the set of all n-bit on-line permutations. Note, that one can
efficiently implement a random on-line permutation by lazy sampling.

4.4. (On-Line) Authenticated Encryption Schemes

Definition 4.9 (Authenticated Encryption Scheme With Associated Data).
An authenticated encryption scheme is a triple Π = (K, E ,D), with a key-generation
procedure K that generates a key K, an encryption algorithm EK(H, M), and a decryption
algorithm DK(H, C, T ). H denotes the associated data (or header), M the message, T
the authentication tag, and C the ciphertext, with H, M, C ∈ {0, 1}∗ and T ∈ {0, 1}t,

10



where t > 1 is an integer. We write

(C, T )← EK(H, M) and

M | ⊥ ← DK(H, C, T )

to state that E always outputs a ciphertext C and the authentication tag T for the tuple (H,
M), and D outputs the decryption of (H, C) iff the given tag is valid or ⊥ otherwise. The
correctness condition applies that DK(EK(H, M)) = M to hold for each triple (K, H, M).

Note that this definition implies that the nonce N is part of the header.

We call an authenticated encryption scheme Π = (K, E ,D) an on-line authenticated en-
cryption scheme if E encrypts plaintexts in an on-line manner.
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Chapter 5
Security Notions

This section recalls the common security notions for AE schemes and on-line AE schemes.
Authenticated encryption aims at ensuring privacy and authenticity of encrypted messages
both at the same time. Therefore, this section recalls the security notions which consider
either or both aspects. The literature provides various notions and relations for determin-
istic [46] and nonce-based AE schemes [5, 6, 31, 43, 45]. We consider the common CCA3

notion by Rogaway and Shrimpton [46] and recall the related IND-CPA and INT-CTXT

notions for privacy and integrity which are covered by CCA3. Thereupon, we point out
the differences between on-line and off-line encryption by recalling the OCCA3 notion for
on-line AE schemes, and the OPERM-CCA notion for privacy of on-line ciphers. Therefore,
we follow the approach from [21] and provide a game for each notion that illustrates the
interaction of the respective adversaries with their oracles.

Remark. Note that we always consider nonce-ignoring adversaries which are allowed to
use a nonce multiple times similar to the security notions of integrity for authenticated
encryption schemes in [21].

5.1. General Security Notions for AE Schemes

Definition 5.1 (CCA3-Security). Let Π = (K, E ,D) be an authenticated encryption
scheme as defined in Definition 4.9. Then, the CCA3-advantage of a computationally
bounded adversary A is defined as

AdvCCA3
Π (A) =

∣

∣

∣

∣

Pr

[

K
$
←− K : AEK(·,·),DK(·,·,·) ⇒ 1

]

− Pr
[

A$(·,·),⊥(·,·,·)⇒ 1
]

∣

∣

∣

∣

.

The CCA3 notion states that A has access to an oracle O, which provides A with an
encryption and a decryption functions. At the beginning, O tosses a fair coin; depending
on the result of the coin toss, O uses the real encryption EK(·, ·) and decryption DK(·, ·, ·)
functions, or a random function $(·, ·) for the encryption and a ⊥ function for ⊥(·, ·, ·),

12



which returns ⊥ on every input, for the decryption queries of A. Wlog., we assume that
A never asks a query to which it already knows the answer. The goal of A in this scenario
is to determine the result of the coin toss, i.e., to distinguish between the real encryptions
with Π and random one.

Definition 5.2 (IND-CPA-Security). Let Π = (K, E ,D) be an authenticated encryption
scheme as defined in Definition 4.9. Then, the IND-CPA-advantage of a computationally
bounded adversary A for Π is defined as

AdvIND-CPA
Π (A) ≤

∣

∣

∣

∣

Pr

[

K
$
←− K : AE(·,·) ⇒ 1

]

− Pr
[

A$(·,·) ⇒ 1
]

∣

∣

∣

∣

.

We define AdvIND-CPA
Π (q, ℓ, t) as the maximum advantage over all IND-CPA-adversaries

A on Π that run in time at most t, and make at most q queries of total length ℓ to the
available oracles.

Privacy and Integrity Notions. Let A be a computationally bounded IND-CPA-adversary
with access to an oracle O, which responds either with real encryptions using POETEK

or
a random permutation π, as given in Definition 5.2. In the beginning, the oracle tosses a
fair coin to obtain a bit b. Thereupon, A can query messages to O. Depending on b, A
obtains either “real” encryptions for the messages it sends, or just the “random” outputs.
Hence, the challenge for A is to guess b.

Definition 5.3 (INT-CTXT-Security). Let Π = (K, E ,D) be an authenticated encryp-
tion scheme as defined in Definition 4.9. Then, the INT-CTXT-advantage of a computa-
tionally bounded adversary A for Π is given by the success probability of winning the game
GINT-CTXT that is defined in Figure 5.1. Thus, we obtain

AdvINT-CTXT
Π (A) ≤ Pr

[

AGINT-CTXT ⇒ 1
]

.

We define AdvINT-CTXT
Π (q, ℓ, t) as the maximum advantage over all INT-CTXT-adversaries

A on Π that run in time at most t, and make at most q queries of total length ℓ to the
available oracles.

1 I n i t i a l i z e ()

2 K
$
←− K;Q ← ∅;

3 Finalize ( )
4 return win ;

10 Encrypt (H, M )
11 (C, T )← EK(H, M) ;
12 Q ← Q∪ {(H, C, T )} ;
13 return (C, T ) ;

20 Verify (H, C, T )
21 M ← DK(H, C) ;
22 i f ((H, C, T ) 6∈ Q and M 6= ⊥) then

23 win ← true ;
24 return (M 6= ⊥) ;

Figure 5.1.: The INT-CTXT game GINT-CTXT for an authenticated encryption scheme Π =
(K, E ,D). Q denotes the query history of A.
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Relation to Privacy and Integrity Notions. Bellare and Namprempre showed in [5]
that the CCA3 advantage of an adversary on an AE scheme Π can be upper bounded
by the sum of the maximal advantage of an adversary on the integrity of Π, and the
maximal advantage of a chosen-plaintext adversary on the privacy of Π. Fleischmann et
al. generalized this relation in [21] (cf. Theorem 5.4). We illustrate this notion simply by
rewriting Definition 5.1 as

∣

∣

∣

∣

Pr

[

K
$
←− K : AEK(·,·),DK(·,·,·) ⇒ 1

]

− Pr

[

K
$
←− K : AEK(·,·),⊥(·,·,·)⇒ 1

]

(5.1)

+ Pr

[

K
$
←− K : AEK(·,·),⊥(·,·,·) ⇒ 1

]

− Pr
[

A$(·,·),⊥(·,·,·) ⇒ 1
]

∣

∣

∣

∣

. (5.2)

Equation (5.1) refers to the INT-CTXT advantage and Equation 5.2 to the IND-CPA-
advantage of A on Π.

Theorem 5.4 (Theorem 1 in [21]). Let Π = (K, E ,D) be an authenticated encryption
scheme, with a header space H, a message space M, and a tag space T . Then, the CCA3-
advantage over all adversaries A that run in time at most t, ask at most q queries of a
total length at most ℓ to the available oracles, can be upper bounded by

AdvCCA3
Π (q, t, ℓ) ≤ AdvIND-CPA

Π (q, t, ℓ) + AdvINT-CTXT
Π (q, t, ℓ).

5.2. Security Notions for On-Line AE Schemes

Definition 5.5 (OCCA3-Security). Let Π = (K, E ,D) be an on-line authenticated en-
cryption scheme as defined in Definition 4.9. Then, the OCCA3-advantage of an adversary
A is upper bounded by

AdvOCCA3
Π (A) ≤ AdvOPERM-CPA

Π (q, ℓ, t) + AdvINT-CTXT
Π (q, ℓ, t).

The OCCA3-advantage of Π, AdvOCCA3
Π (q, ℓ, t), is then defined by the maximum advantage

of all OCCA3-adversaries A that run in time at most t, and make at most q queries of
total length ℓ to the available oracles.

Based on the definition above, an on-line authenticated encryption scheme Π is OCCA3-
secure if it provides both OPERM-CPA-security and INT-CTXT-security. We borrow the
formal OPERM-CCA-notion from Bellare et al. [3, 4], which specifies the maximal advan-
tage of an adversary A with access to both encryption and decryption oracles to distinguish
between the output of a on-line cipher Γ under a randomly chosen key K and that of a
random permutation.
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Definition 5.6 (OPERM-CCA-Security). Let K be a k-bit key, P a random on-line
permutation, and Γ : {0, 1}k × ({0, 1}n)∗ → ({0, 1}n)∗ an on-line cipher. Then, we define
the OPERM-CCA-advantage of an adversary A by

AdvOPERM-CCA
Γ (A) =

∣

∣

∣Pr
[

AΓK(·),Γ−1
K (·) ⇒ 1

]

− Pr
[

AP (·),P −1(·) ⇒ 1
]∣

∣

∣ ,

where the probabilities are taken over K
$
←− K and P

$
←− OPermn. Further, we define

AdvOPERM-CCA
Γ (q, ℓ, t) as the maximum advantage over all OPERM-CCA-adversaries A

that run in time at most t, and make at most q queries of total length ℓ to the available
oracles.

In [5] Bellare and Namprempre also showed that IND-CCA-security implies non-malleable
chosen-ciphertext-security (NM-CCA). Hence, it is easy to derive that OPERM-CCA implies
“weak” non- malleability, i.e., an adversary that manipulates the i-th ciphertext block
cannot distinguish between the (i + 1), (i + 2), . . . ciphertext blocks of Γ and random.
Thus, it suffices to show the OPERM-CCA-security of POET to achieve non-malleability.

Note that an OPERM-CPA-adversary A on an on-line cipher Γ can always be used by
an OPERM-CCA-adversary A’ on Γ which inherits the advantage of A. Hence, an upper
bound for the OPERM-CCA-advantage of Γ is always same as an upper bound for the
OPERM-CPA-advantage of Γ.
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Chapter 6
Specification

This chapter defines the POET family of on-line AE schemes. From a top-level point of
view, POET consists of three layers:

1. The top-row layer applies an ǫ-AXU function Ft to the previous chaining values and
computes the XOR of the output and the message block Mi.

2. The middle layer performs a simple layer of ECB encryption.

3. The bottom-row layer applies another ǫ-AXU function Fb to the previous chaining
value of bottom-row and computes the XOR between the output and the encrypted
blocks. The result denotes the ciphertext block Ci.

Thus, the two chaining values X and Y are updated by applying the ǫ-AXU functions
Ft at the top and Fb at the bottom and an XOR before and after the encryption layer,
respectively. The chaining in POET ensures that each message block depends on all pre-
vious blocks, which provides our desired weak non-malleability property (cf. Section 5.2).
A schematic illustration of the encryption process of POET is given in Figure 6.1.

POET takes advantage of several well-suited practices from previous modern AE schemes:
the masking process and the middle ECB layer follow the secure XEX approach [44],
which provides security against chosen-plaintext and chosen-ciphertext adversaries. The
processing of the header is based on the PMAC design [10] (see Figure 6.2), which is
both fast and provably secure. Finally, the processing of the final message block and the
tag-generation of POET follows the idea of McOE [22], which provides length-preserving
encryption/decryption.

In the remainder of this chapter, we first provide a formal definition of POET. Next, we
describe the individual steps of the key generation, header and message processing,
tag generation and verification. Prior, we define three auxiliary functions, that are
used for length-preserving encryption:

• GetMSB(X, b) returns the b most significant bits of X.

• GetLSB(X, b) returns the b least significant bits of X.

• Split(X, b) returns a tuple (Xα, Xβ) where Xα contains the b most significant bits
of X and Xβ the |X| − b least significant bits of X. Hence, Xα || Xβ = X.
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FtFt FtFt

FbFb FbFb
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E E EE

X0 X2 XℓM−2 XℓM−1

XℓM

Y0 Y2 YℓM−2 YℓM−1

YℓM

M1 M2 MℓM−1 MℓM
|| τα

C1 C2 CℓM−1 CℓM
|| T α

Figure 6.1.: Schematic illustration of the encryption process with POET for an (ℓM )-block message
M = M1, . . . , MℓM

, where S denotes the encrypted message length, i.e., S = EK(|M |), F is an
ǫ-AXU family of hash functions, and τα is taken from the most significant bits of the header
processing to pad the final message block. Note that the functions Ft and Fb use the keys Ltop

F

and Lbot
F , respectively.

6.1. Definition of POET

Definition 6.1 (POET). Let m, n, k ≥ 1 be three integers. Let POET = (K, E ,D) be an
AE scheme as defined in Definition 4.9, E : {0, 1}k ×{0, 1}n → {0, 1}n a block cipher and
F : {0, 1}k × {0, 1}n → {0, 1}n be a family of keyed ǫ-AXU hash functions. Furthermore,
let H be the header (including the public message number N appended to its end), M
the message, T the authentication tag, and C the ciphertext, with H, M, C ∈ {0, 1}∗ and
T ∈ {0, 1}n. Then, E is given by procedure EncryptAndAuthenticate, D by procedure
DecryptAndVerify, and K by procedure GenerateKeys, as shown in Algorithms 6.1
and 6.2, respectively.

Algorithm 6.1 EncryptAndAuthenticate and DecryptAndVerify.

EncryptAndAuthenticate(H, M)
101: ℓM ← ⌈|M |/n⌉
102: τ ← ProcessHeader(H)
103: (C, XℓM

, YℓM
)← Encrypt(M, τ)

104: (CℓM
, T α)← Split(CℓM

, |M | mod n)
105: T β ← GenerateTag(τ, XℓM

, YℓM
)

106: T ← T α || T β

107: return (C1 || . . . || CℓM
, T )

DecryptAndVerify(H, C, T )
201: ℓC ← ⌈|C|/n⌉
202: τ ← ProcessHeader(H)
203: (M, XℓC

, YℓC
)← Decrypt(C, τ)

204: (MℓC
, τ ′)← Split(MℓC

, |C| mod n)
205: if VerifyTag(T, XℓC

, YℓC
, τ, τ ′) then

206: return M
207: end if
208: return ⊥
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HℓH
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ττ

Figure 6.2.: The ProcessHeader procedure of POET. The right block depicts the processing of
the final block in the case when the header length is not a multiple of the block size.

Key Generation. POET requires in total five pairwise independent k-bit keys used as
follows:

• One key K for the block cipher.

• One masking key L for processing the header.

• Two keys Ltop
F and Lbot

F for the keyed family of hash functions F .

• One masking key LT to generate the authentication tag.

The key generation follows the idea from [29]. Thus, the user supplies a k-bit secret key
SK. The further keys are then generated by encrypting distinct constants const0, const1,
etc. For simplicity, we recommend consti = i. Therefore, under the assumption that E is a
secure Pseudorandom Permutation (PRP), we can ensure to obtain pairwise independent
keys for the block cipher invocation and the masking.

Algorithm 6.2 The procedures GenerateKeys and ProcessHeader.

GenerateKeys(SK)
301: K ← ESK(const0)
302: L← ESK(const1)
303: Ltop

F ← ESK(const2)
304: Lbot

F ← ESK(const3)
305: LT ← ESK(const4)
306: return (K, L, Ltop

F , Lbot
F , LT )

ProcessHeader(H)
401: ℓH ← ⌈|H|/n⌉, Σ← 0n

402: for i← 1, . . . , ℓH − 1 do
403: Σ← Σ⊕ EK(Hi ⊕ 2i−1L)
404: end for
405: if |HℓH

| = n then
406: τ ← EK(HℓH

⊕ 2ℓH−13L⊕Σ)
407: else
408: HℓH

← HℓH
|| 10∗

409: τ ← EK(HℓH
⊕ 2ℓH−15L⊕Σ)

410: end if
411: return τ

Header Processing. The header H denotes the associated data of a message, and an n-
bit nonce N appended to its end. Hence, one can also interpret the entire header as a nonce.
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In cases when the header length |H| is smaller than the block size n or not a multiple of n,
we apply the common 10*-padding, i.e., we append a single ‘1’-bit to the header followed
by as many ‘0’-bits as necessary s.t. the length of the padded header becomes a multiple
of n, and consists of at least one block. This is a mandatory requirement for POET since
it generates an intermediate tag τ which is later used to generate the authentication tag.
Thus, if the size of the user-given header is zero, POET masks one block of the form
1 || 0n−1 and then encrypts the result to generate the value τ .

POET processes the header in a PMAC-like fashion [10]. First, each block is masked by
XORing a distinct multiple of L. Note that all multiplications are Galois-Field Multipli-
cations in GF (2128). Each masked header block, except for the last one, is then encrypted
by E, and all outputs are XORed together, including the last masked block. The XOR
sum is then encrypted again by E to generate an intermediate tag τ . The procedure
ProcessHeader is shown in Algorithm 6.2. Note that the procedure can be fully paral-
lelized.

Algorithm 6.3 The procedures Encrypt and Decrypt.

Encrypt(M, τ)
501: ℓM ← ⌈|M |/n⌉, X0 ← Y0 ← τ
502: for i← 1, . . . , ℓM − 1 do
503: Xi ← Ft(Xi−1)⊕Mi

504: Yi ← EK(Xi)
505: Ci ← Fb(Yi−1)⊕ Yi

506: end for
507: S ← EK(|M |)
508: τα ← GetMSB(τ, n − |MℓM

|)
509: M∗

ℓM
← (MℓM

|| τα)
510: XℓM

← Ft(XℓM−1)⊕M∗
ℓM
⊕ S

511: YℓM
← EK(XℓM

)
512: CℓM

← Fb(YℓM−1)⊕ YℓM
⊕ S

513: C ← (C1 || . . . || CℓM
)

514: return (C, XℓM
, YℓM

)

Decrypt(C, T, τ)
601: ℓC ← ⌈|C|/n⌉, X0 ← Y0 ← τ
602: for i← 1, . . . , ℓC − 1 do
603: Yi ← Fb(Yi−1)⊕ Ci

604: Xi ← E−1
K (Yi)

605: Mi ← Ft(Xi−1)⊕Xi

606: end for
607: S ← EK(|C|)
608: T α ← GetMSB(T, n− |CℓC

|)
609: C∗ℓC

← (CℓC
|| T α)

610: YℓC
← Fb(YℓC−1)⊕ C∗ℓC

⊕ S

611: XℓC
← E−1

K (YℓC
)

612: MℓC
← Ft(XℓC−1)⊕XℓC

⊕ S
613: M ← (M1 || . . . || MℓC

)
614: return (M, XℓC

, YℓC
)

Encryption/Decryption. The workflow of the message-processing is shown in Algorithm
6.3 and Figure 6.1. For each message block Mi for 1 ≤ i ≤ ℓM −1, the following process is
applied: update the top- and bottom-row chaining values Xi−1 and Yi−1 by applying the
ǫ-AXU functions F (Ltop

F , Xi−1) and F (Lbot
F , Yi−1), respectively. Then, XOR the output

of F (Ltop
F , Xi−1) with the current message block Mi to derive Xi. The value Xi is then

used twice; (1) as an input to the block cipher E and (2) as the new chaining value in
the top row. The output Yi = EK(Xi) is also used twice; (1) as the new chaining value
for the bottom-row and (2) is XORed with the updated chaining value F (Lbot

F , Yi−1) to
generate the current ciphertext block Ci. The decryption process is defined similarly in
procedure Decrypt. For simplicity, we write Ft(·) and Fb(·) instead of F (Ltop

F , ·) and
F (Lbot

F , ·) hereafter.

To process the final message block MℓM
, we first separate header and message processing,

then we encrypt the length of the message and XOR the result S to the final message
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block MℓM
. The result of MℓM

⊕ S is then XORed with Ft(XℓM−1) to produce XℓM
. The

value XℓM
is again used twice; (1) as input to the block cipher call and (2) as chaining

input to the tag generation step. The output YℓM
= EK(XℓM

) is also used twice; (1)
as the new bottom-row chaining value for the tag generation and (2) is XORed with the
updated chaining value Fb(YℓM−1). Thereupon, to produce the final ciphertext block, the
result of the XOR operation is XORed again with the encrypted message length S.

For messages whose length is not a multiple of the block size, we employ a slightly more
complicated procedure for the final block. Though, to avoid an overhead when trans-
mitting the message, POET borrows the provably secure tag-splitting technique from
McOE [21]. This means that messages are never padded; instead, the final message
block MℓM

is filled up with the most significant bits of the intermediate tag τ :

M∗
ℓM
←MℓM

|| GetMSB(τ, n − |MℓM
|),

where n denotes the block length. M∗
ℓM

is then encrypted as described above for the final
message block. C∗ℓM

is then split, where its |MℓM
| most significant bits are used as the

final bits of the ciphertext and the remaining bits as the n − |MℓM
| most significant bits

of the tag, T α:

CℓM
← GetMSB(C∗ℓM

, |MℓM
|), T α ← GetMSB(C∗ℓM

, n − |MℓM
|).

The remaining bits of the tag are produced as shown next.

Algorithm 6.4 The procedures GenerateTag and VerifyTag.

GenerateTag(τ, XℓM
, YℓM

)
701: XℓM +1 ← Ft(XℓM

)⊕ τ ⊕ LT

702: YℓM +1 ← EK(XℓM +1)
703: C∗ℓM +1 ← Fb(YℓM

)⊕ YℓM +1 ⊕ LT

704: (T β, Z)← Split(C∗ℓM +1, |MℓM
|)

705: return T β

VerifyTag(T, XℓC
, YℓC

, τ, τ ′)
801: XℓC+1 ← Ft(XℓC

)⊕ τ ⊕ LT

802: YℓC+1 ← EK(XℓC+1)
803: C∗ℓC+1 ← Fb(YℓC

)⊕ YℓC+1 ⊕ LT

804: (T ′, Z)← Split(C∗ℓC+1, n− |τ ′|)

805: T β ← GetLSB(T, n− |τ ′|)
806: τα ← GetMSB(τ, |τ ′|)
807: return τα = τ ′ and T ′ = T β

Authentication/Verification. To generate or to verify the authentication tag, POET pro-
cesses the intermediate tag τ similarly to a message block Mi (cf. Algorithm 6.4 and Fig-
ure 6.3). The only difference is given by masking τ with an independent key LT . When
the length of the message is a multiple of n, the entire output C∗ℓM +1 (cf. Line 703) is
used as a tag, which is transmitted together with the ciphertext when authenticating; for
verification, C∗ℓC+1 is compared to the tag which was transmitted with the ciphertext.

When the message length is not a multiple of n, we already obtained the first n− |MℓM
|

bits of the tag (T α) from the encryption of the final message block (cf. Line 104 of
Algorithm 6.1). The remaining |MℓM

| bits of the tag (T β) are taken from the |MℓM
| most

significant bits of C∗ℓM +1 (cf. Line 704 of Algorithm 6.4); the rest of C∗ℓM +1 is discarded.

The concatenation of T α || T β is simply used as a tag for authentication.

The verification consists of two steps: first, the n − |MℓC
| least significant bits of M∗

ℓC

are compared with the n − |MℓC
| most significant bits of τ . Thereupon, the |MℓC

| most

20



Ft

Fb

E

LT

LT

XℓM

YℓM

τ

T β || Z

Figure 6.3.: Schematic illustration of the tag-generation procedure in POET.

significant bits of C∗ℓC+1 are compared to the |MℓC
| least significant bits of T . If both

checks are valid, the decrypted ciphertext is output; otherwise, the decryption fails (cf.
lines 205 to 208 of Algorithm 6.1).

6.2. Instantiations for the ǫ-AXU Family of Hash Functions

We highly recommend to instantiate POET with AES-128 as a block cipher. For the ǫ-AXU
families of hash functions F , we propose three different instantiations in the following:

1. POET with Galois-Field multiplications in GF (2128),

2. POET with 4-round AES, and

3. POET with full-round AES.

POET with Galois-Field Multiplications. We recommend multiplications in GF (2128),
similar to the multiplication in AES-GCM [36] as universal hash function with an ǫ ≈
2−128. The family of hash functions F is then defined by Ft(X) = X · Ltop

F or Fb(X) =
X · Lbot

F , depending on whether it is applied to the top or the bottom row.

When using multiplications in GF (2128), one has to consider the risk of weak keys. As
stressed by Saarinen in [48], 2128 − 1 is not prime, so it produces some smooth-order
multiplicative groups. Thus, one can explore a weak key with a probability about 2−96.
To avoid the risk of having weak multiplication keys (one for processing the header and
two hash-function keys for processing the message), we propose to perform a checking on
the keys L, Ltop

F , and Lbot
F right after their generation phase. For each weak key, we choose

a fresh unique constant consti with 1 ≤ i ≤ 3, depending on which key is weak, re-generate
the corresponding key, and check it again. This procedure can be repeated until none of
the keys is weak. In addition, one can add a test function to assure that all keys are
pairwise independent, and none of them represents a multiple of another one. Since this
additional security measurement must be applied only at the time of key setup, and since
only a small fraction of keys are weak, the effort for this can be considered negligible in
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the long-term view.

POET with Four-Round AES. When trying to minimize the implementation footprint,
it may be desirable to have an encryption scheme based on only a single primitive. Further-
more, as mentioned before, maximizing the throughput is often critical. Therefore, POET

with four-round AES as family of keyed hash functions may be an excellent choice for
restricted devices and/or devices with integrated AES-NI. In particular, the key schedule
of the keyed hash function needs to be called only once for a given key.

The drawback of this solution would be a slightly lower number of message blocks that
can be processed under the same key. As shown by Daemen et al. in [16], the four-round
AES is a family of ǫ-AXU – under the reasonable assumption that all four round keys are
independent – where ǫ can be upper bounded by

ǫ ≤ 1.88 · 2−114 ≈ 2−113.

This implies that at most ≪ 256 message blocks can be en- or decrypted under the same
key.

POET with Full-Round AES. As a strongly conservative variant, we propose to use full
AES-128 as a family of hash functions. Under the common PRF assumption – where we as-
sume that AES is indistinguishable from a random 128-bit permutation, this construction
yields ǫ ≈ 2−128. On multi-core architectures with integrated AES- NI, the performance
of POET for encrypting a single message is still significantly faster than HCBC1 and
comparable to that of HCBC2.

6.3. Specification of POE

The encryption and decryption functions of POET– when considered without processing
associated data and authentication – define a self-contained family of fast and secure
on-line ciphers, called POE. While we concentrate on authenticated encryption in this
work, we can profit from considering the encryption process in an isolated fashion for our
later security discussion of POET. Therefore, we briefly define the POE family of on-line
ciphers. Note, POE is only defined for messages whose length is a multiple of n. The
key-generation for POE is similar to POET (Algorithm 6.2), except the steps in lines 302
and 305 are neglected since POE considers neither associated data nor authentication.

Definition 6.2 (POE). Let k, n ≥ 1 be two integers, E : {0, 1}k × {0, 1}n → {0, 1}n

be a block cipher, and F : {0, 1}n × {0, 1}n → {0, 1}n be a family of keyed ǫ-AXU hash
functions. Further, let K, Ltop

F , Lbot
F ∈ {0, 1}k denote pairwise independent keys. Then, the

encryption of POE and its inverse are defined by the procedures Encrypt and Decrypt

as shown in Algorithm 6.5.
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Algorithm 6.5 The procedures Encrypt and Decrypt for POE.

Encrypt(M)
101: ℓM ← |M |/n, X0 ← Y0 ← 1
102: for i← 1, . . . , ℓM do
103: Xi ← Ft(Xi−1)⊕Mi

104: Yi ← EK(Xi)
105: Ci ← Fb(Yi−1)⊕ Yi

106: end for
107: return C ← (C1 || . . . || CℓM

)

Decrypt(C)
201: ℓC ← |C|/n, X0 ← Y0 ← 1
202: for i← 1, . . . , ℓC do
203: Yi ← Fb(Yi−1)⊕ Ci

204: Xi ← E−1
K (Yi)

205: Mi ← Ft(Xi−1)⊕Xi

206: end for
207: return M ← (M1 || . . . || MℓC

)
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Chapter 7
The Parallel Version POET-m

This chapter defines a generalization of the POET family of on-line AE schemes – called
POET-m, where the m arises from an m-periodic structure in the encryption and decryp-
tion. When using two instances of the ǫ-AXU function F , i.e., Ft and Fb (cf. Figure 7.1),
POET-1 is identical to POET. Nevertheless, we claim that POET-m has similar security
as POET. Therefore, the security proof of POET-m will soon be published on ePrint. Like
POET, POET-m consists of three layers:

1. The top-row layer masks the incoming message blocks Mi and applies an ǫ-AXU
hash function F .

2. The middle layer performs ECB encryption.

3. The bottom-row layer applies F to the encrypted blocks, and masks the outputs
again, before they are uses as ciphertext blocks Ci.

Additionally, POET-m has two internal chaining values, X and Y , which are updated by
an XOR with the values before and after the encryption layer, respectively. As for POET,
the chaining ensures that each message block depends on all previous blocks.

A schematic illustration of the encryption process of POET-m is given in Figure 7.1. It
is easy to see that each layer allows m− 1 subsequent blocks to be processed in parallel.
For the m-th block, the chaining values X and Y are updated with the hash functions in
order to prevent cyclic patterns, and the procedure repeats for the following m blocks.

Given this structure, POET-m also makes use of the XEX approach, the PMAC design,
and the idea of tag splitting to allow length-preserving encryption/decryption.

In the remainder of this chapter, we first provide a formal definition of POET-m. There-
upon, we describe the individual steps of the key generation, header and message
processing, tag generation and verification. We use the same auxiliary functions as
introduced for POET in Chapter 6.

Definition 7.1 (POET-m). Let m, n, k ≥ 1, be three integers. Let POET−m = (K, E ,D)
be an AE scheme, E : {0, 1}k×{0, 1}n → {0, 1}n a block cipher and F : {0, 1}k×{0, 1}n →
{0, 1}n be a family of keyed, invertible ǫ-AXU hash functions. Furthermore, let H be the
header (including the public message number N appended to its end), M the message, T the
authentication tag, and C the ciphertext, with H, M, C ∈ {0, 1}∗ and T ∈ {0, 1}n. Then, E
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FtFt

FtFt

FbFb

FbFb

L1

L1

Lm−1

Lm−1

S

S

EEEE

X0 X1 Xm−2 XℓM−1

XℓM

Y0 Y1 Ym−2 YℓM−1

YℓM

M1 Mm−1 Mm MℓM
|| τα

C1 Cm−1 Cm CℓM
|| T α

Figure 7.1.: Schematic illustration of the encryption process with POET-m for an (m + 1)-
block message M = M1, . . . , MℓM

. Note that the message blocks M1, . . . , Mm−1 can be processed
in parallel. S denotes the encrypted message length, i.e., S = EK(|M |), L1, . . . , Lm−1 are the
masking keys, F is an ǫ-AXU family of hash functions, and τα is taken from the most significant
bits of the header processing to pad the final message block. Note that Ft and Fb use the keys Ltop

F

and Lbot
F . In comparison to POET, one can use Ft = Fb i.e., Ft(L

top
F , ·) = Fb(Lbot

F , ·) = F (LF , ·)
for some fixed key LF (derived from the secret key SK) for POET-m.

is given by procedure EncryptAndAuthenticate, D by procedure DecryptAndVerify,
and K by procedure GenerateKeys, as shown in Algorithms 7.1 and 7.2.

Algorithm 7.1 EncryptAndAuthenticate and DecryptAndVerify.

EncryptAndAuthenticate(H, M, m)
101: ℓM ← ⌈M/n⌉
102: τ ← ProcessHeader(H)
103: (C, XℓM

, YℓM
)← Encrypt(M, τ, m)

104: (CℓM
, T α)← Split(CℓM

, |MℓM
|)

105: T β ← GenerateTag(τ, XℓM
, YℓM

)
106: T ← T α || T β

107: return (C1 || . . . || CℓM
, T )

DecryptAndVerify(H, C, T, m)
201: ℓC ← ⌈C/n⌉
202: τ ← ProcessHeader(H)
203: (M, XℓC

, YℓC
)← Decrypt(C, T, τ, m)

204: (MℓC
, τ ′)← Split(MℓC

, |CℓC
|)

205: if VerifyTag(T, XℓC
, YℓC

, τ, τ ′) then
206: return M
207: end if
208: return ⊥

Key Generation. Since we consider Ft = Fb, POET-m requires in total m + 4 pairwise
independent k-bit keys as generated similar to POET, and used as follows:

• One key K for the block cipher.
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• One masking key L for processing the header.

• One key LF for the keyed family of hash functions F .

• m− 1 masking keys L1, . . . Lm−1 for encryption and decryption.

• One masking key LT for generating the authentication tag.

The key generation is given in Algorithm 7.2. For the sake of simplicity, we write F in
short for F (LF , ·).

Algorithm 7.2 The procedures GenerateKeys and ProcessHeader.

GenerateKeys(SK)
301: K ← ESK(const0)
302: L← ESK(const1)
303: LF ← ESK(const2)
304: LT ← ESK(const4)
305: for i← 1, . . . , m− 1 do
306: Li ← ESK(consti+4)
307: end for
308: return (K, L, LF , LT , L1, . . . , Lm−1)

ProcessHeader(H)
401: ℓH ← ⌈|H|/n⌉, Σ← 0n

402: for i← 1, . . . , ℓH − 1 do
403: Σ← Σ⊕ EK(Hi ⊕ 2i−1L)
404: end for
405: if |HℓH

| = n then
406: τ ← EK(HℓH

⊕ 2ℓH−13L⊕Σ)
407: else
408: HℓH

← HℓH
|| 10∗

409: τ ← EK(HℓH
⊕ 2ℓH−15L⊕Σ)

410: end if
411: return τ

Header Processing. As one can easily see from Algorithm 7.2, the header processing is
identical to that of POET. Therefore, we do not provide an extra figure.

Encryption/Decryption. The message-processing workflow is shown in Algorithm 7.3
and Figure 7.1. Let m denote the number of message blocks processed within one period.
Each message block Mi for 1 ≤ i ≤ ℓM − 1 with i mod m 6≡ 0 is masked by XORing the
corresponding secret masking key Li and the application of the ǫ-AXU function F . The
output is then XORed using the previous chaining value Xi−1 resulting in Xi, which is
then used twice: (1) as input for the current block cipher invocation and (2) as the new
chaining value in the top row. The output of the block-cipher call Yi = EK(Xi) is then
used twice: (1) as the new chaining value in the bottom-row and (2) is XORed with the
previous chaining value Yi−1 to produce the input to the next invocation of F . The output
of F is then XORed with the corresponding masking key Li to compute the ciphertext
block Ci. As for POET, the values X0 and Y0 are given by the intermediate tag τ .

The message blocks Mi with i mod m ≡ 0 are processed similar to an intermediate message
block of POET. Thus, the chaining values Xi−1 and Yi−1 are updated using F . The value
Xi = F (Xi−1) ⊕Mi is then used twice; (1) as input to E and (2) as the new top-row
chaining value. The output Yi = EK(Xi) is also used twice: (1) as the new chaining value
for bottom-row and (2) is XORed with F (Yi−1) to create the ciphertext block Ci. The
decryption process is defined similarly in procedure Decrypt. The processing of the last
message block (either with or without tag splitting) is similar to that of POET, except for
the fact that POET-m can use the same ǫ-AXU function F in the top and bottom row.
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Algorithm 7.3 The procedures Encrypt and Decrypt.

Encrypt(M, τ, m)
501: ℓM ← ⌈|M |/n⌉, X0 ← Y0 ← τ
502: for i← 1, . . . , ℓM − 1 do
503: j ← i mod m
504: if j 6= 0 then
505: Xi ← F (Mi ⊕ Lj)⊕Xi−1

506: Yi ← EK(Xi)
507: Ci ← F (Yi−1 ⊕ Yi)⊕ Lj

508: else
509: Xi ← F (Xi−1)⊕Mi

510: Yi ← EK(Xi)
511: Ci ← F (Yi−1)⊕ Yi

512: end if
513: end for
514: S ← EK(|M |)
515: τα ← GetMSB(τ, n − |MℓM

|)
516: M∗

ℓM
← (MℓM

|| τα)
517: XℓM

← F (XℓM−1)⊕M∗
ℓM
⊕ S

518: YℓM
← EK(XℓM

)
519: CℓM

← F (YℓM−1)⊕ YℓM
⊕ S

520: C ← (C1 || . . . || CℓM
)

521: return (C, XℓM
, YℓM

)

Decrypt(C, T, τ, m)
601: ℓC ← ⌈|C|/n⌉, X0 ← Y0 ← τ
602: for i← 1, . . . , ℓC − 1 do
603: j ← i mod m
604: if j 6= 0 then
605: Yi ← F−1(Ci ⊕ Lj)⊕ Yi−1

606: Xi ← E−1
K (Yi)

607: Mi ← F−1(Xi−1 ⊕Xi)⊕ Lj

608: else
609: Yi ← F (Yi−1)⊕ Ci

610: Xi ← E−1
K (Yi)

611: Mi ← F (Xi−1)⊕Xi

612: end if
613: end for
614: S ← EK(|C|)
615: T α ← GetMSB(T, n− |CℓC

|)
616: C∗ℓC

← (CℓC
|| T α)

617: YℓC
← F (YℓC−1)⊕ C∗ℓC

⊕ S

618: XℓC
← E−1

K (YℓC
)

619: MℓC
← F (XℓC−1)⊕XℓC

⊕ S
620: M ← (M1 || . . . || MℓC

)
621: return (M, XℓC

, YℓC
)

Algorithm 7.4 The procedures GenerateTag and VerifyTag.

GenerateTag(τ, XℓM
, YℓM

)
701: XℓM +1 ← F (XℓM

)⊕ τ ⊕ LT

702: YℓM +1 ← EK(XℓM +1)
703: C∗ℓM +1 ← F (YℓM

)⊕ YℓM +1 ⊕ LT

704: (T β, Z)← Split(C∗ℓM +1, |MℓM
|)

705: return T β

VerifyTag(T, XℓC
, YℓC

, τ, τ ′)
801: XℓC+1 ← F (XℓC

)⊕ τ ⊕ LT

802: YℓC+1 ← EK(XℓC+1)
803: C∗ℓC+1 ← F (YℓC

)⊕ YℓC+1 ⊕ LT

804: (T ′, Z)← Split(C∗ℓC+1, n− |τ ′|)

805: T β ← GetLSB(T, n− |τ ′|)
806: τα ← GetMSB(τ, |τ ′|)
807: return τα = τ ′ and T ′ = T β

Authentication/Verification. For the generation and verification of the authentication
tag, POET-m applies a similar strategy as POET, with the only difference that POET-
m can use the same ǫ-AXU function F for top and bottom row (cf. Algorithm 7.4).
Therefore, we do not provide an extra figure.
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Chapter 8
Security Analysis

This chapter analyzes the security analysis of POET. First, we provide a proof for the
OPERM-CCA-security of POE. Thereupon, we prove the OPERM-CCA- security for POET.
Finally, we prove the INT-CTXT-security of POET.

8.1. OPERM-CCA-Security of POE

Theorem 8.1 (OPERM-CCA-Security of POE). Let E ∈ Block(k, n) be a block ci-
pher and F : {0, 1}n → {0, 1}n be an ǫ-AXU family of hash functions and F−1 its inverse.
Then, it holds that

AdvOPERM-CCA
POEE,E−1

(q, ℓ, t) ≤ ℓ2 · ǫ +
ℓ2

2n − ℓ
+ AdvIND-SPRP

E,E−1 (ℓ,O(t)).

Proof. Let A be an OPERM-CCA-adversary with access to an oracle O, which responds
either with real encryptions/decryptions using POETEK

(M)/POETE−1
K

(C) or random en-

cryptions/decryptions using P (M) or P−1(C) as in Definition 5.6. In the beginning, the
oracle tosses a fair coin to obtain a bit b. Thereupon, A can query messages to O. De-
pending on b, A obtains either “real” encryptions/decryptions for the messages it sends
to O, or just “random” outputs. Hence, the task for A is to guess b.

A asks at most q queries of a total length of at most ℓ blocks and stores each query together
with the corresponding response from the oracle as tuples (M i, Ci) in a query history Q.
Note that we assume wlog. that A will not make queries to which it already knows the
answer. It is easy to see that we can upper bound Equation (5.6) as (cf. [21], Sec. 4)

∣

∣

∣

∣
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A
POEE ,POE
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E−1 ⇒ 1

]
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POEπ,POE
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∣

(8.1)

+

∣

∣

∣

∣

Pr

[

A
POEπ,POE

−1

π−1 ⇒ 1

]

− Pr
[

AP (·),P −1(·) ⇒ 1
]

∣

∣

∣

∣

, (8.2)
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where π : {0, 1}n → {0, 1}n denotes an n-bit random permutation that was chosen at
random from the set of all n-bit random permutations, and π−1 denotes its inverse.

The difference in Equation (8.1) can be upper bounded by the IND-SPRP-advantage of A
to distinguish E from a random permutation

AdvIND-SPRP

E,E−1 (ℓ, O(t)).

Proof Idea for the Remainder. It remains to study the difference in (8.2), which refers
to the advantage of A to distinguish POE instantiated with a random permutation π from
P (·), P−1(·). From the structure of POE, we can identify two cases: (1) collisions between
internal values of POE (COLL), or (2) no collisions occur (NOCOLLWIN). From the law
of total probability follows that we can rewrite (8.2) as

Pr [COLL] · Pr [COLLWIN] + Pr [¬COLL] · Pr [NOCOLLWIN]

≤ Pr [COLL] + Pr [NOCOLLWIN] ,

with

Pr [NOCOLLWIN] =

∣

∣

∣

∣

Pr

[

A
POEπ,POE

−1

π−1 ⇒ 1 | ¬COLL

]

− Pr
[

AP (·),P −1(·) ⇒ 1
]

∣

∣

∣

∣

. (8.3)

COLL. In this case, A tries to distinguish POE from random by exploiting some collision
between internal values. Since π is random permutation, any “fresh” (i.e., not previously
queried) input to π(·) or its inverse π−1(·) produces a random output. This implies for
the internal values of POE:

• For any fresh Xi, the result of Yi = π(Xi) is also random in encryption direction,
and so are the resulting ciphertext outputs Ci = Yi ⊕ Fb(Yi−1).

• For any fresh Yi in decryption direction, the result of Xi = π−1(Yi) is also random,
and so are the resulting decrypted message blocks Mi = Xi ⊕ Ft(Xi−1).

It is easy to see that there are two possible subcases: an internal collision in the top row
(COLLenc), or an internal collision in the bottom row (COLLdec). COLL then represents
the event that either (or both) of these subcases occurred:

COLL = COLLenc ∨ COLLdec.

Due to the symmetric structure of POE, it applies that Pr[COLLenc] = Pr[COLLdec]. The
individual probabilities for the events COLLenc and NOCOLLWIN are upper bounded by
ℓ2

2 · ǫ. The proof is given in Lemma B.1 in Appendix B.

NOCOLLWIN. The probability for the event NOCOLLWIN can be upper bounded ℓ2

2n−ℓ .
The proof is given in Lemma B.2 in Appendix B.

Our claim follows from summing up the individual terms. �

8.2. OPERM-CCA-Security of POET

From the OPERM-CCA-security bound for POE we can now easily derive the respective
advantage for POET.

29



Theorem 8.2 (OPERM-CCA-Security of POET). Let E ∈ Block(k, n) Then, it ap-
plies that

AdvOPERM-CCA
POETE,E−1

(q, ℓ, t) ≤
ℓ2

2n
+ ℓ2 · ǫ + 2 ·max

{

ℓ · q · ǫ,
q2

2n − q

}

+
(ℓ + 2q)2

2n − (ℓ + 2q)

+AdvIND-SPRP

E,E−1 (ℓ + 2q, O(t)).

Proof. The proof follows the ideas of Theorem 8.1. We can write Equation (5.6) as
∣
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, (8.5)

where π : {0, 1}n → {0, 1}n denotes an n-bit random permutation that was chosen at
random from the set of all n-bit random permutations, and π−1 denotes its inverse.

The difference in Equation (8.4) can be upper bounded by the IND-SPRP-advantage of A
to distinguish E from a random permutation π

AdvIND-SPRP

E,E−1 (ℓ + 2q, O(t)).

The additional term 2q results from the fact that the tag-generation of POET requires –
compared to POE– two additional calls to the block cipher for the encryption of the
message length and the tag generation.

Proof Idea for the Remainder. It remains to study the difference in (8.5), which refers to
the advantage of A to distinguish POET instantiated with a random permutation π from
P (·), P−1(·). From the structure of POET we can identify two cases: (1) collisions between
internal values of POET (COLL), or (2) no collisions occur (NOCOLLWIN). From the
law of total probability follows that we can rewrite (8.5) as

Pr [COLL] · Pr [COLLWIN] + Pr [¬COLL] · Pr [NOCOLLWIN]

≤ Pr [COLL] + Pr [NOCOLLWIN] ,

with

Pr [NOCOLLWIN] =

∣

∣

∣

∣

Pr

[

A
POETπ,POET

−1

π−1 ⇒ 1 | ¬COLL

]

− Pr
[

AP (·),P −1(·) ⇒ 1
]

∣

∣

∣

∣

.

(8.6)

COLL. In this case, A tries to distinguish POE from random by exploiting some collision
between internal values. Since π is random permutation, any “fresh” (i.e., not previously
queried) input to π(·) or its inverse π−1(·) produces a random output. This implies for
the internal values of POE:

• For any fresh Xi, the result of Yi = π(Xi) is also random in encryption direction,
and so are the resulting ciphertext outputs Ci = Yi ⊕ Fb(Yi−1).
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• For any fresh Yi in decryption direction, the result of Xi = π−1(Yi) is also random,
and so are the resulting decrypted message blocks Mi = Xi ⊕ Ft(Xi−1).

From the definition of POET we can derive the following subcases:

1. COLLad: A found a collision for two distinct headers H 6= H ′:
ProcessHeader(H) = ProcessHeader(H ′).

2. COLLenc: For two distinct tuples (Xi−1, Mi) and (X ′j−1, M ′
j) in one or two en-

cryption query results (M, C), (M ′, C ′) ∈ Q, the resulting top-row chaining values
Xi = X ′j collide.

3. COLLdec: For two distinct tuples (Yi−1, Ci) and (Y ′j−1, C ′j) from one or two decryp-
tion query results (M, C), (M ′, C ′) ∈ Q, the resulting bottom-row chaining values
Yi = Y ′j collide.

4. COLLlmb: For two distinct tuples (Xi−1, Mi) and (X ′j−1, M ′
j) in one or two en-

cryption query results (M, C), (M ′, C ′) ∈ Q, the resulting top-row chaining values
Xi = X ′j collide, when Mi and/or M ′

j are the last blocks of M and M ’, respectively.

5. COLLlcb: For two distinct tuples (Yi−1, Ci) and (Y ′j−1, C ′j) in one or two decryption
query results (M, C), (M ′, C ′) ∈ Q, the resulting top-row chaining values Yi = Y ′j
collide, when Ci and/or C ′j are the last blocks of C and C’, respectively.

Moreover, we define a compound event COLL which reflects the event that either or
multiple events of COLLad, COLLenc, COLLdec, COLLlmb, COLLlcb occurred:

COLL = COLLad ∨ COLLenc ∨ COLLdec ∨ COLLlmb ∨ COLLlcb. (8.7)

Note that Pr [NOCOLLWIN] reflects the success probability ofA to distinguish POETE,E−1

from a random OPERM. Furthermore, due to the symmetric structure of POET, we have
Pr[COLLenc] = Pr[COLLdec] and Pr[COLLlmb] = Pr[COLLlcb].

We can upper bound the probabilities of the remaining events as follows:

• Pr[COLLad] = ℓ2/2n. The proof is given by Theorem 8.3.

• Pr[COLLenc] = ℓ2

2 · ǫ. The proof is given in Lemma B.1 in Appendix B.

• Pr[COLLlmb] = max
{

ℓ · q · ǫ, q2

2n−q

}

.

The proof is given in Lemma B.3 in Appendix B.

• Pr[NOCOLLWIN] = (ℓ+2q)2

2n−(ℓ+2q) . The proof is given in Lemma B.2 in Appendix B.

Note that the analysis of the event NOCOLLWIN is similar to the NOCOLLWIN
event analyzed in Chapter 8.1, except for the fact that for POET one has to consider
ℓ + 2q blocks since the tag generation requires two additional block-cipher calls per
query.

Our claim follows from summing up the individual terms. �

Since our header-processing step is similar to PMAC, we recall the security bound from [44].

Theorem 8.3 (Security of PMAC [44]/Upper Bound for COLLad). Let A be an
adversary which asks at most q queries of total length at most ℓ to to an oracle which uses
either PMAC or a uniformly at random chosen PRF. Then, the maximal advantage of A
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to distinguish PMAC from a PRF is upper bounded by

AdvPRF

P MAC[P erm(n)](A) ≤ ℓ2/2n.

8.3. INT-CTXT-Security Analysis of POET

Lemma 8.4 (INT-CTXT-Security of POET). Let Π = (K, E ,D) be a POET scheme
as defined in Definition 6.1. Then, it applies

AdvINT-CTXT
Π (q, ℓ, t) ≤

ℓ2 + q

2n
+

q

2n/2 − q
+ AdvOPERM-CCA

POEE,E−1
(q, ℓ, t)

+ AdvIND-SPRP

E,E−1 (ℓ + 2q, O(t)).

Proof. We define A as an INT-CTXT-adversary with access to an oracle O, as in Game
GINT-CTXT (cf. Figure 5.1). A can query encryption and decryption messages to O. Similar
to our OPERM-CCA proof, we say that A stores each query it asks to O together with the
oracle response as a tuple (H, M, C, T ) in a query history Q, and A does not ask queries
to which it already knows the answer. A wins if it can predict the correct authentication
tag T for a query that was not previously asked, i.e., that is not in Q.

We assume that POET is an OPERM, which implies that the generated tags T are random
values. Hence, the task for A is to find a forgery (H, C, T ) with (H, C, ∗, T ) 6∈ Q and
D(H, C, T ) 6= ⊥.

For the remainder, we replace the block cipher E by a random permutation π. It is easy
to see that the advantage for the adversary from this replacement can be upper bounded
by

AdvIND-SPRP

E,E−1 (ℓ + 2q, O(t)).

Next, we analyze the possible cases that an adversary can win, depending on the length
of CℓC

as well as on the freshness of the values H, C, and T .

H is fresh. When H is fresh, since the header processing step of POET is secure up to
the birthday bound, τ will also be a fresh random value. Therefore, we can upper bound
the success probability of A to find a forgery by

ℓ2 + q

2n
.

Since we already considered the case of fresh header, for the remainder of this proof we
assume that H is old, i.e., it was queried before by A. We distinguish between two different
scenarios depending on whether the last message block is full or not.
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Scenario 1: (|CℓC
| = n). For the case when the last message block is full, we have to

consider the following two mutually exclusive cases depending on whether C is a fresh
value or C is old and T is fresh.

Case (1): C is fresh. Since C is fresh and POET is an OPERM, the probability that the
decryption of T yields the correct value τ is 2−n. Therefore, in this case, we can upper
bound the success probability of A to find a forgery by

AdvOPERM-CCA
POEπ,π−1

(q, ℓ, t) ≤
q

2n
.

Case (2): C is old and T is fresh. Since POET maps each tuple (H, C) uniquely to one
value T = π(Ft(XℓC

)⊕ τ ⊕LT )⊕Fb(YℓC
)⊕LT , there can not exist a second value T ′ 6= T

which is also valid. Hence, the success probability for A in this case is 0.

Scenario 2: (|CℓC
| 6= n). In this part we consider the INT-CTXT-security of POET for

messages of arbitrary length. Again, we consider two mutually exclusive cases as the
above.

Case (1): C is fresh. For this case we already know that XℓM
and YℓM

must be fresh;
otherwise, A could have found an internal collision that violates the OPERM-CCA secu-
rity of POET. The probability of this event can be upper bounded by the OPERM-CCA

advantage:

AdvOPERM-CCA
POEπ,π−1

(q, ℓ, t).

In the following, we consider the probability that the condition τα = τ ′ from Line 807 of
procedure VerifyTag (see Section 6) holds. Since YℓC

= Fb(YℓC−1) ⊕ CℓC
|| T α ⊕ S is

fresh, XℓC
will also be a fresh random value. A now has to find a collision in the n−|MℓC

|
least significant bits of MℓC

|| τα, i.e., it has to find a collision of the form

Ft(XℓC−1)⊕XℓC
⊕ S = Ft(X

′
ℓC′−1)⊕X ′ℓC′

⊕ S′.

Since it holds that XℓC
6= X ′ℓC′

, it is easy to see that when S = S′ the success probability

of collision is 0. Thus, we consider the case when S 6= S′. Then, the success probability
of A to obtain τα = τ ′ for a single query can be upper bounded by

Prα = max
MℓC

{Pr[Ft(XℓC−1)⊕XℓC
⊕ S = (MℓC

|| τα)]} ≤
1

2(n−|MℓC
|) − q

with XℓC
= π−1(YℓC

). For q queries, the probability for τα = τ ′ is then at most

q

2(n−|MℓC
|) − q

.

We can use a similar argument to upper bound the probability of T β = T ′.

Prβ = max
Z

{

Pr[Fb(YℓC
)⊕ YℓC+1 ⊕ LT = (T β || Z)]

}

≤
1

2|MℓC
| − q
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with YℓC+1 = π(XℓC +1). Then, the probability for q queries is at most

q

2|MℓC
| − q

.

Note that the (total) success probability of this case depends on the length |CℓC
|. There-

fore, we can distinguish between the three following subcases:

Subcase (2.1): |CℓC
| < n/2. In this case, we can upper bound Prα by 1

2n/2−q
and Prβ

by 1. Hence, the total success probability for q queries is at most

Prα · Prβ ≤
q

2n/2 − q
.

Subcase (2.2): |CℓC
| = n/2. In this case, we can upper bound Prα by 1

2n/2−q
and Prβ

by 1
2n/2−q

. Hence, the total success probability for q queries is at most

Prα · Prβ ≤
q2

2n − q · 2n/2+1 + q2
.

Subcase (2.3): |CℓC
| > n/2. In this case, we can upper bound Prα by 1 and Prβ by

1
2n/2+1−q

. Hence, the total success probability for q queries is at most

Prα · Prβ ≤
q

2n/2+1 − q
.

Since all three subcases are mutually exclusive, we can upper bound the success probability
for q ≤ 2n/2−2 queries by

max

{

q

2n/2 − q
,

q2

2n − q · 2n/2+1 + q2
,

q

2n/2+1 − q

}

≤
q

2n/2 − q
.

Case (2): C is old and T is fresh. Since POET maps each tuple (H, C) uniquely to
one tag, there cannot exist a second value T ′ 6= T which is valid. Hence, the success
probability of A in this case is 0.

Due to the fact that Case (1) and (2) are mutually exclusive, we can upper bound the
success probability by

q

2n/2 − q
.

Since scenario 1 and scenario 2 are mutually exclusive, we can upper bound the success
probability for q queries by

AdvOPERM-CCA
POEπ,π−1

(q, ℓ, t) + max

{

q

2n
,

q

2n/2 − q

}

≤ AdvOPERM-CCA
POEπ,π−1

(q, ℓ, t) +
q

2n/2 − q
.

Our claim follows from summing up the individual terms. �
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Chapter 9
Implementation Aspects

POE and POET can be efficiently implemented in both soft- and hardware. Though, our
reference implementation of POET is not supposed to be optimized for the large variety
of supported platforms. However, in the majority of cases, the block cipher will be AES,
and the hash function either Galois-Field multiplication or round-reduced AES. Therefore,
the present section recalls the state-of-the-art for implementations of the AES and Galois-
Field multiplications on 64-, 32-, and 8-bit processors as well as with and without native
instructions (NIs). Then, we derive estimations for optimized versions from the existing
figures. An optimized implementation for POET will then be available at mid of April
2014.

9.1. AES Implementations

Implementations without NI. Using standard optimization techniques (such as com-
bined shift-and-mask instructions, scaled-index loads, etc.), Bernstein and Schwabe showed
in 2008 [8] that the AES can be implemented for a 64-bit architecture without native in-
structions to run at about 10 clock cycles per byte (cpb). In 2009, Käsper and Schwabe [20]
improved these results with a bitsliced implementation of the AES that exploited the
Streaming SIMD Extension instructions (SSE1-SSE5). Their implementations achieved
about 7.59 cpb on an Intel Core2 Q6600 (Kentsfield) and about 6.92 cpb on a Intel i7-920
CPU (Bloomfield). For 32-bit processors, Bernstein and Schwabe achieved a throughput
of about 14.13 cpb on a Pentium 4 f12 (Willamette). For an example of a mobile 32-bit
processor, we can use the figures for the ARM Cortex-A8 by Krovetz and Rogaway [35].

Concerning off-the-shelf 8-bit processors, Osvik et al. [38] showed at the FSE 2010, that
the AES can be implemented at speeds of around 124.6 cpb on an AVR Atmel. Con-
sidering slightly modified devices, Tillich and Herbst [53] proposed at CT-RSA 2008 an
enhancement for 8-bit AVR cores, which allowed to perform an AES encryption at a speed
of about 78.7 cpb (1,259 cycles/block) on an Atmel ATmega128, with additional costs of
about 1,100 gates. Table 9.1 summarizes the performance figures for the AES.
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Platform CPU Cbp/Core Ref.

64 bit Intel i7-920 (Bloomfield) 6.92 [20]
Intel Core 2 Q9550 (Yorkfield) 7.59 [20]
Intel Core 2 Q6600 (Kentsfield) 9.32 [20]

32 bit Intel Pentium 4 f12, x86 (Willamette) 14.13 [8]
ARM Cortex-A8 (OpenSSL) 25.40 [35]

8 bit Atmel AVR ATmega128 (extended) 78.70 [53]
Atmel AVR AT90USB646 124.60 [38]

Table 9.1.: Speed of existing software implementations for one encryption of the AES (without
key schedule) for common platforms. Cpb = cycles per byte.

Implementations with NI. In 2010, Intel [24] introduced native instructions for the
AES encryption and decryption, which are nowadays supported by all modern Intel
(Sandy Bridge, Ivy Bridge, Haswell series) and AMD (Bulldozer, Piledriver, and Jaguar
series) processors. The AES New Instruction Set contains six constant-time CPU in-
structions: aesenc (one-round encryption), aesenclast (last-round encryption), aesdec

(single-round decryption), aesdeclast (last-round decryption), aesimc (inverse MixColumns),
and aeskeygenassist for faster key scheduling. On recent processors, they achieved a
throughput of 1-2 and a latency of 7-8 cycles.

9.2. Implementations of Galois-Field Multiplication

Implementations without NI. Käsper and Schwabe showed in [20] that a multiplication
in GF (2128) can be efficiently implemented in software with table lookups at a speed of
about three cpb on 64-bit platforms. For 32-bit implementations, one can use, e.g., the
mpFq library by Gaudry and Thomé [14].

Implementations with NI. In 2010, Intel [26] integrated the pclmulqdq instruction into
its Westmere processor series for multiplication in GF (2128) to increase the performance
of AES-GCM. The pclmulqdq instruction set takes two 128-bit factors and a byte as input
and performs carry-less multiplication of one 64-bit half of each operand; the additional
byte parameter then determines which halves are used.

Two additional methods for multiplications in GF (2128) optimize the speed of pclmulqdq

on Haswell processors. The method by Jankowski and Laurent [30] is limited to GCM;
the method by Gueron [25] also targets but is not limited to GCM. The latter allows to
perform a multiplication at about 2.4 cpb when processing a single message.

9.3. Performance of POET

Implementations without NI. From the existing implementations, we can derive esti-
mations for optimized implementations of POET, using the AES as a block cipher and
either Galois- Field multiplication or four-round AES for universal hashing, on different
platforms without NI. Therefore, we sum up the costs for one AES encryption and two
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multiplications, or for 18 rounds of AES, respectively. For either version, we add an
overhead of one cpb for the chaining XOR operations.

For 64-bit platforms, we can use the figures from Käspar and Schwabe [20], which give
a first estimate that POET-1 (identical to POET) with GF (2128) is supposed to run at a
speed of about 3+ 7+ 3+ 1 = 14 cpb on platforms with native processor instructions. For
the version with four-round AES, we expect POET to also run at about 1.8·7+1 ≈ 14 cpb.

For 32-bit implementations, we can use the figures from Krovetz and Rogaway [35] to
estimate the performance on an ARM Cortex-A8. Therefore, we approximate the costs
for an AES encryption with 25.4 cpb from their figures for AES-CTR. To approximate the
costs of a multiplication in GF (2128), we use the difference of their performance figures for
GCM and CTR, which yields about 50.8 − 25.4 ≈ 25.4 cpb. Therefore, we have an upper
bound of 25.4+2·25.4+1 ≈ 78 cpb for POET with AES and GF, and 1.8·25.4+1 ≈ 46 cpb
with four-round AES for a mobile 32-bit CPU. However, there clearly exist various more
powerful 32-bit CPUs. For 8-bit implementations, POET with four-round AES will be
in favor to have a single primitive. We expect POET to run at about 250 cpb on a
non-modified 8-bit Atmel AVR CPU.

Cpb/Core

Platform CPU AES + GF AES + AES-4

64-bit (with NI) Intel Haswell 3.92 [12] ≈ 3
64-bit (without NI) Intel Bloomfield ≈ 14 ≈ 14
32-bit (without NI) ARM Cortex-A8 ≈ 78 ≈ 46
8-bit Atmel AVR ATmega128 – ≈ 250

Table 9.2.: Estimated speeds of software implementations of POET for processing a single message
of ≥ 2048 bytes on common platforms. Cpb = cycles per byte.

Optimization Potential of POET. Clearly, optimized implementations can profit from
the fully parallel design of PMAC for the header-processing step. But, the encryption
and decryption steps of POET can also benefit from several aspects of pipelining and/or
parallelism.

Galois-Field multiplications can be fully parallelized with an approach that was pointed
out by [34]. For instance, consider four subsequent blocks of a message, M1 || . . . || M4.
With Galois-Field multiplications, the input for the second block-cipher call in POET

is given by K2 + KM1 + M2. Instead of sequentially multiplying with K, adding M3,
multiplying with K and adding M4, one can compute the whole process in parallel:

• For the third block-cipher call: K · (K2 + KM1 + M2) + M3.

• For the fourth block-cipher call: K2 · (K2 + KM1 + M2) + KM3 + M4.

This approach increases the total number of multiplications, but decreases the latency.
Given c cores and c subsequent message blocks to process, this approach reduces the
latency of POET from c hash-function calls to O(log c).

For instance, the multiplications can be performed in parallel for a set of eight subsequent
message blocks, which are XORed using the existing 128-bit XOR instructions. The
encryption allows each block to be processed independently from the other. On Haswell
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processors, the AES round function has a latency of 7-8 cycles and an inverse throughput
of a single cycle. As pointed out by Andreeva et al. [2], one can efficiently utilize the CPU-
pipeline by applying the first AES round to each message block in the set, then applying
the second round to each block, etc. In addition, one can profit from the available Intel
Advanced Vector Extensions (AVX) on Haswell processors. After encryption, the same
strategy as the above can be used to reduce the latency of multiplications in the bottom
row.

Implementations with NI. In a recent study, Bogdanov et al. [12] compared several AE
schemes, including POET (the version published at the FSE 2014), COPA, COBRA, and
McOE-G. For an outlook of the performance of POET with NI, Table 9.3 summarizes the
figures by Bogdanov et al. The authors showed that POET with the AES as cipher and
Galois-Field multiplication as a family of hash functions runs at about 3.92 clock cycles
per byte when encrypting a single message, and at about 2.1 clock cycles per byte when
processing multiple messages in parallel. While their study considered only POET with
Galois-Field multiplications, we expect POET with four-round AES to run slightly faster.
Further, the authors showed that a recent implementation of COPA (requiring 20 AES
rounds per message block) can run in 1.76 clock cycles per byte for a single message.
Thus, we expect an optimized implementation of POET instantiated with four-round AES
(hence, 18 AES rounds per block) to run at about < 3 cpb when encrypting in the single-
message scenario, and at about < 2 cpb in the multi-message scenario.

Message Length (bytes)

Mode 128 256 512 1024 2048

Single message 4.61 4.24 4.13 4.02 3.92
Multiple messages 2.37 2.27 2.17 2.12 2.10
Speed-up for multi. messages ×1.95 ×1.87 ×1.90 ×1.90 ×1.87

Table 9.3.: Speed measurements in cycles per bytes of implementations of POET with NI on a
single core of a 64-bit Intel Core i5-4300U at 1900 MHz, by Bogdanov et al. [12].

9.4. Hardware Implementations

Hardware implementations of POET can profit from the wide range of existing AES imple-
mentations. Galois-Field multiplications are likewise well-suited for hardware implemen-
tations, as McGrew and Viega already pointed out for GCM in [36]. Paar [39] summarized
four methods with different trade-offs of speed and area, which are recalled in Table 9.4.

Method Time Area

Parallel 1 O(q2)
Digit Serial [50] q/D O(q ·D)
Bit Serial q O(q)
Super Serial [37] q · E O(q/E)

Table 9.4.: Time-area trade-offs of different Galois-Field multiplication methods for GF (2q),
from [36].
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One can see that a high-speed implementation can compute one multiplication in a single
clock, although, at the costs of a squared number of gates. Hence, an implementation
which makes use of the single-digit serial or parallel multiplier will be useful. Moreover,
POET with four-round AES allows hardware implementations to share components for
cipher and hashing, reducing the required area.
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Chapter 10
Design Rationale

Key Generation. The key generation follows the idea from [29]. Thus, the user supplies a
k-bit secret key SK. The further keys are then generated by encrypting distinct constants
using the AES under SK. Since the AES is a well-studied and secure block cipher (a
secure PRP), we can ensure to obtain pairwise independent keys, which is crucial for our
security analysis (cf. Chapter 8). Note that, when using multiplications in GF (2128), one
has to consider the risk of weak keys, which can occur with a probability of 2−96 [48].
Therefore, one can check for weak keys during the key generation and to re-generate the
corresponding key using a new distinct constant, until none of the keys is weak.

Three-Layered Structure. The basic idea behind this symmetric design is given by the
secure XEX approach [44], where a block cipher is wrapped by XORing secret values. For
POET/POET-m, these values are given by Xi−1 (top row) and Yi−1 (bottom row), which
are given as output of Ft and Fb, i.e., two instances of the ǫ-AXU hash function family F
using independent keys. Thus, we have shown that POET inherits the resistance against
chosen-plaintext- and chosen-ciphertext-adversaries. Moreover, based on the chaining, we
show that POET satisfies OPERM-CCA (cf. Chapter 8), which on the other hand implies
decryption misuse.

Header Processing. Since POET – beyond other things – is designed to provide a high
performance (without neglecting any security properties), we decided to use the fast and
provably secure PMAC design [10] for processing the header.

Tag Splitting. Since two of the application fields of POET are low-latency and restricted
environments, we want to keep the overhead as small as possible. Therefore, POET in-
herits the provably secure tag-splitting approach from McOE [22], which provides length-
preserving encryption/decryption.

Standard Primitives. Our recommended instances of POET are the AES as block cipher
and Galois- Field multiplications for hashing to exploit available native instruction sets
of current processors. Since both are well-studied, widely-deployed, standard primitives,
POET becomes easy to analyze.
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Key Lengths. We recommend POE and POET for the use of 128-bit keys. It is straight-
forward to enhance POE and POET with a block cipher with longer keys, such as AES-256.
However, the benefit of longer keys depends on the use case.

For attacks settings, where an adversary has unlimited oracle access, the security of POET

is still upper bounded by the birthday bound of the state size. On the other hand, in
settings where the oracle renews the key after ℓ≪ 2n/2 blocks were processed, POET may
benefit from increased key lengths.

Absence of Hidden Weaknesses. We, the designers of POE, POET, and POET-m, de-
clare that we have not hidden any weaknesses in this cipher.

41



Chapter 11
Acknowledgments

We thank all reviewers of the FSE 2014 for their helpful comments. Furthermore, this work
did benefit from the fruitful discussions at the Seminar on Symmetric Cryptography at
Schloss Dagstuhl in January 2014, especially from the contributions of Daniel J. Bernstein
and Tetsu Iwata. Finally, we would like to thank Jian Guo, Jérémy Jean, Thomas Peyrin,
and Lei Wang who pointed out a mismatch between the specified and the analyzed version
of POET in the pre-proceedings of the FSE 2014.

42



Chapter 12
Intellectual Property

To the best of our knowledge, neither POE, POET, POET-m nor any of their instantiations
is encumbered by any patents. We have not, and will not, apply for patents on any part
of our design or anything in this document, and we are unaware of any other patents or
patent filings that cover this work. The example source code is in the public domain and
can be freely used. If any of this information changes, the submitters will promptly (and
within at most one month) announce these changes on the crypto-competitions mailing
list.

We make this submission to the CAESAR hash function competition solely as individuals.
Our respective employers neither endorse nor condemn this submission.

43



Chapter 13
Consent

We hereby consent to all decisions of the CAESAR selection committee regarding the
selection or non-selection of this submission as a second-round candidate, a third-round
candidate, a finalist, a member of the final portfolio, or any other designation provided by
the committee. We understand that the committee will not comment on the algorithms,
except that for each selected algorithm the committee will simply cite the previously
published analyses that led to the selection of the algorithm. We understand that the
selection of some algorithms is not a negative comment regarding other algorithms, and
that an excellent algorithm might fail to be selected simply because not enough analysis
was available at the time of the committee decision. We acknowledge that the committee
decisions reflect the collective expert judgments of the committee members and are not
subject to appeal. We understand that if they disagree with published analyses then
they are expected to promptly and publicly respond to those analyses, not to wait for
subsequent committee decisions. We understand that this statement is required as a
condition of consideration of this submission by the CAESAR selection committee.
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Appendix A
Test Vectors for POET

A.1. Galois-Field Multiplication

SK: 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 (16 octets)
K: db f1 84 11 2e b9 11 16 59 71 2b af cf f2 ab 24 (16 octets)
L: 9a 7a 06 19 aa c2 9e 6c 1f 2b 5c 47 53 d5 88 f3 (16 octets)

Ltop
F : 14 2c 51 c9 af 2c f1 d9 2e 89 37 c4 fb c1 8d 7a (16 octets)

Lbot
F : b2 12 da 69 51 71 7f 95 59 07 ca d6 bc fe 08 6a (16 octets)

LT : b8 84 cc fd 8f b1 5e 99 15 db 6a d7 6b 29 6e 4d (16 octets)

H: (0 octets)
τ : 68 5b 56 f2 eb e0 25 fb b1 a6 09 40 9a af d7 69 (16 octets)

M : 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff (16 octets)
C: f4 b0 19 7a 24 7f f0 7d 67 b0 48 fe 89 eb 29 08 (16 octets)
T : f1 fd 30 54 5a bf f3 32 50 3e 57 00 58 40 e2 a8 (16 octets)

H: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

de ad be ef de af ba be

(24 octets)

τ : 25 89 8a 27 ef f0 fc 67 3a ab 06 87 45 0a 18 f4 (16 octets)

M : (0 octets)
C: (0 octets)
T : 2c dd 53 c3 a9 e7 40 f9 53 bb 1e fa 95 c3 42 1b (16 octets)
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SK: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff (16 octets)
K: fd e4 fb ae 4a 09 e0 20 ef f7 22 96 9f 83 83 2b (16 octets)
L: 84 d4 c9 c0 8b 4f 48 28 61 e3 a9 c6 c3 5b c4 d9 (16 octets)

Ltop
F : 1d f9 27 37 45 13 bf d4 9f 43 6b d7 3f 32 52 85 (16 octets)

Lbot
F : da ef 4f f7 e1 3d 46 a6 db cb 1c 02 4e 72 53 87 (16 octets)

LT : 06 e8 65 b7 a0 36 2d 2f c1 a1 56 3b c2 e3 05 84 (16 octets)

H: 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 (16 octets)
τ : df 4f a1 ff e9 c7 50 93 06 b6 69 cb b2 3f f4 bc (16 octets)

M : 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

de ad be ef de af ba be

(56 octets)

C: 24 8b 2f d2 e7 1a 8e 9d 45 b4 da ac 1e e7 ea e2

af 3e 53 6e 7e 4b 16 0f dc 5d a9 1d f7 05 05 bc

9b 96 3a 84 8a 03 50 38 83 2d 86 f4 15 37 52 82

8e c1 7b 11 6f 11 9b f8

(56 octets)

T : b7 5f b8 31 bb 86 d7 cf 99 51 42 ec 58 95 10 60 (16 octets)

H: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

de ad be ef de af ba be

(24 octets)

τ : 89 fc f9 14 0d 5f aa b2 a5 36 ff b2 9f ed 5c 92 (16 octets)

M : 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

fe fe ba be

(52 octets)

C: ee 8d 9b 61 e8 58 ab 75 dc e1 02 ad a5 bb a9 55

f9 c7 c3 17 0d 11 29 e6 a7 1b 58 56 0a eb 2c eb

0c 71 9b 25 e4 37 b8 56 6b e5 ea fe f1 42 16 fe

1f 82 d3 8f

(52 octets)

T : 3f 49 c1 3c 48 d3 6e 9a c4 dd 0f 12 2c b2 27 c7 (16 octets)
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A.2. Four-Round AES

SK: 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 (16 octets)
K: db f1 84 11 2e b9 11 16 59 71 2b af cf f2 ab 24 (16 octets)
L: 9a 7a 06 19 aa c2 9e 6c 1f 2b 5c 47 53 d5 88 f3 (16 octets)

Ltop
F : 14 2c 51 c9 af 2c f1 d9 2e 89 37 c4 fb c1 8d 7a (16 octets)

Lbot
F : b2 12 da 69 51 71 7f 95 59 07 ca d6 bc fe 08 6a (16 octets)

LT : b8 84 cc fd 8f b1 5e 99 15 db 6a d7 6b 29 6e 4d (16 octets)

H: (0 octets)
τ : 68 5b 56 f2 eb e0 25 fb b1 a6 09 40 9a af d7 69 (16 octets)

M : 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff (16 octets)
C: 0e ce b2 9d be 27 e7 9a 3a 99 b6 46 76 ef e5 db (16 octets)
T : c2 77 f1 6f 1d a8 07 d9 52 55 04 93 d3 a0 ca 84 (16 octets)

H: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

de ad be ef de af ba be

(24 octets)

τ : 25 89 8a 27 ef f0 fc 67 3a ab 06 87 45 0a 18 f4 (16 octets)

M : (0 octets)
C: (0 octets)
T : 25 89 8a 27 ef f0 fc 67 3a ab 06 87 45 0a 18 f4 (16 octets)
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SK: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff (16 octets)
K: fd e4 fb ae 4a 09 e0 20 ef f7 22 96 9f 83 83 2b (16 octets)
L: 84 d4 c9 c0 8b 4f 48 28 61 e3 a9 c6 c3 5b c4 d9 (16 octets)

Ltop
F : 1d f9 27 37 45 13 bf d4 9f 43 6b d7 3f 32 52 85 (16 octets)

Lbot
F : da ef 4f f7 e1 3d 46 a6 db cb 1c 02 4e 72 53 87 (16 octets)

LT : 06 e8 65 b7 a0 36 2d 2f c1 a1 56 3b c2 e3 05 84 (16 octets)

H: 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 (16 octets)
τ : df 4f a1 ff e9 c7 50 93 06 b6 69 cb b2 3f f4 bc (16 octets)

M : 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

de ad be ef de af ba be

(56 octets)

C: 4b 95 70 55 1f de fe 5c b5 cd ae a1 d4 cb c5 91

1d e6 9a a3 32 f1 0f 7d 6f 1d 2d ae 76 1a c4 ad

d7 3b 5e 83 35 38 01 90 bf d7 c6 41 76 4b 52 e7

e3 d8 58 79 e7 07 f7 16

(56 octets)

T : 24 17 f6 b8 e0 13 7e ef 46 9a ea aa 8d c3 e4 a4 (16 octets)

H: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

de ad be ef de af ba be

(24 octets)

τ : 89 fc f9 14 0d 5f aa b2 a5 36 ff b2 9f ed 5c 92 (16 octets)

M : 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

fe fe ba be

(52 octets)

C: ee 8d 9b 61 e8 58 ab 75 dc e1 02 ad a5 bb a9 55

f9 c7 c3 17 0d 11 29 e6 a7 1b 58 56 0a eb 2c eb

0c 71 9b 25 e4 37 b8 56 6b e5 ea fe f1 42 16 fe

1f 82 d3 8f

(52 octets)

T : 3f 49 c1 3c 48 d3 6e 9a c4 dd 0f 12 2c b2 27 c7 (16 octets)
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A.3. Full-Round AES

SK: 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 (16 octets)
K: db f1 84 11 2e b9 11 16 59 71 2b af cf f2 ab 24 (16 octets)
L: 9a 7a 06 19 aa c2 9e 6c 1f 2b 5c 47 53 d5 88 f3 (16 octets)

Ltop
F : 14 2c 51 c9 af 2c f1 d9 2e 89 37 c4 fb c1 8d 7a (16 octets)

Lbot
F : b2 12 da 69 51 71 7f 95 59 07 ca d6 bc fe 08 6a (16 octets)

LT : b8 84 cc fd 8f b1 5e 99 15 db 6a d7 6b 29 6e 4d (16 octets)

H: (0 octets)
τ : 68 5b 56 f2 eb e0 25 fb b1 a6 09 40 9a af d7 69 (16 octets)

M : 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff (16 octets)
C: 04 f6 a0 60 59 a5 b4 d5 ce ea 84 bc 0a b1 42 c5 (16 octets)
T : 02 88 30 4b a1 14 78 17 12 eb 79 df 56 0e 95 14 (16 octets)

H: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

de ad be ef de af ba be

(24 octets)

τ : 25 89 8a 27 ef f0 fc 67 3a ab 06 87 45 0a 18 f4 (16 octets)

M : (0 octets)
C: (0 octets)
T : 62 50 b8 fa ed 20 99 46 58 f8 bc 1e 24 35 3f 20 (16 octets)
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SK: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff (16 octets)
K: fd e4 fb ae 4a 09 e0 20 ef f7 22 96 9f 83 83 2b (16 octets)
L: 84 d4 c9 c0 8b 4f 48 28 61 e3 a9 c6 c3 5b c4 d9 (16 octets)

Ltop
F : 1d f9 27 37 45 13 bf d4 9f 43 6b d7 3f 32 52 85 (16 octets)

Lbot
F : da ef 4f f7 e1 3d 46 a6 db cb 1c 02 4e 72 53 87 (16 octets)

LT : 06 e8 65 b7 a0 36 2d 2f c1 a1 56 3b c2 e3 05 84 (16 octets)

H: 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 (16 octets)
τ : df 4f a1 ff e9 c7 50 93 06 b6 69 cb b2 3f f4 bc (16 octets)

M : 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

de ad be ef de af ba be

(56 octets)

C: f1 de 86 3e e9 2c 8b e7 e4 97 cc 87 1e 17 07 12

79 98 da a8 59 65 5f a4 a2 82 3b 44 d6 a9 b8 59

74 90 21 cc 38 35 ee 7e a9 ab 4f 67 8b ca 4c 5d

0d 10 38 51 88 64 6a 6b

(56 octets)

T : 84 e9 af a7 e9 0b 26 dc b7 55 46 92 83 d6 04 60 (16 octets)

H: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

de ad be ef de af ba be

(24 octets)

τ : 89 fc f9 14 0d 5f aa b2 a5 36 ff b2 9f ed 5c 92 (16 octets)

M : 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

fe fe ba be

(52 octets)

C: 11 23 cf 29 91 fd ca be 49 01 ef 80 99 88 26 ea

1b 28 4a de d9 d7 2e 69 6d 22 84 1d 47 0e 66 aa

91 8a ac 03 c6 b8 a4 bf e8 21 00 10 f2 1c 92 a3

78 17 40 ec

(52 octets)

T : e6 ad ec ce 21 a1 89 62 4d 73 f4 b0 9d 2f 0c 3f (16 octets)
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Appendix B
Proof of the OPERM-CCA-Security

of POE

B.1. Upper Bound for COLLenc

Lemma B.1 (COLLenc). Let Mi, M ′
j denote the i-th and j-th block of one or two en-

cryption queries M, M ′ ∈ Q, and Xi, X ′j the internal top-row chaining values as defined in
Algorithm 6.5. Let COLLenc be the event that Xi = X ′j for two distinct tuples (Xi−1, Mi)
and (X ′j−1, M ′

j), with i, j ≥ 1. Then, the probability of COLLenc is upper bounded by

Pr[COLLenc] ≤
ℓ2

2
· ǫ.

Proof. The adversary has full control over the message blocks Mi and M ′
j , which can

refer to blocks in two messages as well as to different blocks in the same message. In
encryption direction, the adversary never sees the values Xi and X ′j that serve as input to
the encryption layer.

Case (1): Xi−1 = X ′j−1. This case can happen when M and M ′ share a common prefix
up to the (i − 1)-th message block; otherwise, A would have already found a collision at
this point and we would have given the adversary the attack before. Hence, the advantage
for A is 0 in the latter case. In the former case, from (Xi−1, Mi) 6= (X ′j−1, M ′

j) must follow
that Mi 6= M ′

j . Since Xi and X ′j are computed by Ft(Xi−1) ⊕Mi and Ft(X
′
j−1)⊕M ′

j , it
must hold for a collision that

Ft(Xi−1)⊕Mi = Ft(X
′
j−1)⊕M ′

j ,

with Ft(Xi−1) = Ft(X
′
j−1). It is trivial that this condition can never hold, and the

advantage for A is 0 in this case.
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Case (2): Xi−1 6= X ′j−1. Since Ft(·) is an ǫ-AXU family of hash functions, we can derive
a family of hash functions F ′t (·, ·) as

F ′t(x, m) := Ft(x)⊕m,

which is ǫ-AU according to Theorem 4.3. For a collision of the form Xi = X ′j , it must
hold that

F ′t (Xi−1, Mi) = F ′t(X
′
j−1, M ′

j).

for distinct inputs (Xi−1, Mi) and (X ′j−1, M ′
j). Hence, the probability of COLLenc to

happen can be upper bounded by

Pr[COLLenc] =
ℓ(ℓ− 1)

2
· ǫ ≤

ℓ2

2
ǫ.

�

B.2. Upper Bound for NOCOLLWIN

Lemma B.2 (NOCOLLWIN). Let NOCOLLWIN be the event as defined in Equa-
tion (8.3) in the OPERM-CCA proof of POE. Then, the probability of NOCOLLWIN can
be upper bounded by

Pr[NOCOLLWIN] ≤
ℓ2

2n − ℓ
.

Proof. Here, we regard the case that A shall distinguish POE (POEπ, POE
−1
π−1) from a

random OPERM when no internal collisions occur. Prior, we can generalize that each
distinct query pair (M, C), (M ′, C ′) ∈ Q shares a common prefix. We denote the by i the
length of their longest common prefix:

i = LLCPn(M, M ′) = max
h

{

∀j ∈ 0, . . . , h : Mj = M ′
j

}

.

In the following, we study the difference in the behavior of POE and P for three subcases,
and derive the advantage of A to distinguish between POE and P for each of them.

Case (2.1): Message Blocks in the Common Prefix. The input and output behaviors
of (POEπ, POE

−1
π−1) and a random OPERM are identical for the common prefix. Hence,

the advantage for A in this case is 0.

Case (2.2): Message Block directly after the Common Prefix. Since M and M ′ share
an i-block longest common prefix, it must hold that Xi = X ′i and Yi = Y ′i . For an
encryption query with the inputs Mi+1 6= M ′

i+1, it must hold that

Xi+1 = Ft(Xi)⊕Mi+1 6= Ft(X
′
i)⊕M ′

i+1 = X ′i+1.
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Since π(·) is an SPRP, it must follow that

Ci+1 = Fb(Yi)⊕ π(Xi+1) 6= Fb(Y
′

i )⊕ π(X ′i+1) = C ′i+1.

The analysis is similar in decryption direction. In the random case, P or P−1 are used
with two different prefixes (M1 || . . . || Mi+1) and (M ′

1 || . . . || M ′
i+1) in encryption, or

(C1 || . . . || Ci+1) and (C ′1 || . . . || C ′i+1) in decryption direction. Since P and P−1 are
random OPERMs, Ci+1 6= C ′i+1 or Mi+1 6= M ′

i+1 also must hold in this case, respectively.
Hence, the behavior of (POEπ, POE

−1
π−1) and a random OPERM is also identical for the

message block after the common prefix, and the advantage for A to distinguish them is
also 0 in this case.

Case 2.3: After the (i+1)-st Message Block. In the random case, each query output is
chosen uniformly at random from the set {0, 1}n. However, in the real world, each output
of either an encryption or a decryption query is chosen uniformly at random from the set
{0, 1}n \ Q. This means that in the real case, POE loses randomness with every query.
Therefore, we can upper bound the probability of A to distinguish POE from a random
OPERM by

ℓ2

2n − ℓ
.

Our claim follows from summing up the individual terms. �

B.3. Upper Bound for COLLlmb

Lemma B.3 (COLLlmb). Let Mi, M ′
j denote the i-th and j-th block of one or two en-

cryption queries M, M ′ ∈ Q, and Xi, X ′j the internal top-row chaining values as defined
in Algorithm 6.5. Further, let ℓM denote the number of blocks in M and ℓM ′ the number
of blocks in M ’. Let COLLlmb be the event that Xi = X ′j for two distinct tuples (Xi−1, Mi)

and (X ′j−1, M ′
j), with i, j ≥ 1 and i = ℓM . Then, the probability of COLLlmb is upper

bounded by

Pr
[

COLLlmb
]

≤ max

{

ℓ · q · ǫ,
q2

2n − q

}

.

Proof. The encryption and decryption of POET differs only from that of POE in the way
how POET treats the last message block. To prove OPERM-CCA security for POET, we
have to consider separately the probability for collisions of internal chaining values when
Mi and/or M ′

j refer to the last blocks of M and M ’, respectively. Here, we want to upper
bound the probability of collision in the chaining values Xi = X ′j for two distinct tuples
(Xi−1, Mi) and (X ′j−1, M ′

j), with i, j ≥ 1. Wlog., we say in the following that Mi is the
last block of M , i.e., i = ℓM .

POET pads a message whose length is not a multiple of n with the most significant bits
of the intermediate tag τ : MℓM

|| τα. Hence, we have to analyze the options that MℓM

is a full block or MℓM
is padded. For each of them, we have to analyze three mutually

exclusive cases, depending on M ′
j :
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1. M ′
j is an intermediate block of M ’: j < ℓM ′ .

2. M ′
j is the last, unpadded block of M ’: j = ℓM ′ and |M ′

j | = n.

3. M ′
j is the last, padded block of M ’: j = ℓM ′ and |M ′

j | < n.

Remark. Note that in each case, we regard the subcases Xi−1 = X ′j−1 and Xi−1 6= X ′j−1,
where Xi−1 = X ′j−1 can result from a longest common prefix of M and M ’, or from a
previous collision that A found before. Since the advantage for A is 0 when it found a
collision before, we regard only the case when Xi−1 = X ′j−1 results from a common prefix.
Note that (Xi−1, Mi) 6= (X ′j−1, M ′

j) implies that Mi 6= M ′
j ; otherwise, Mi and M ′

j would
just extend the common prefix and the advantage for A would be 0 again.

Case (1): Without Tag-Splitting at MℓM
. Here, the top-row chaining value XℓM

is
computed by Ft(XℓM−1) ⊕MℓM

⊕ S. Depending on the above mentioned cases, X ′j is
computed slightly differently. For a collision of the form XℓM

= X ′j , it must hold

Ft(XℓM−1)⊕MℓM
⊕ S =















Ft(X
′
j−1)⊕M ′

j if j < ℓM ′ ,

Ft(X
′
ℓM′−1)⊕M ′

ℓM′
⊕ S′ if j = ℓM ′ , |M ′

ℓM′
| = n,

Ft(X
′
ℓM′−1)⊕ (M ′

ℓM′
|| τ ′α)⊕ S′ if j = ℓM ′ , |M ′

ℓM′
| < n.

Note that these cover all possible cases for a collision in XℓM
and X ′j when MℓM

is not
padded. Furthermore, for the sake of simplicity, we make A stronger than it is and give
it full control over τ ′α.

Subcase (1.1): XℓM−1 = X ′j−1. Since Ft(·) is a permutation, it must hold Ft(Xi−1) =
Ft(X

′
ℓM′−1). Hence, we can rearrange our equations from above and see that a collision in

XℓM
and X ′j requires that A must find

MℓM
⊕M ′

j = S or

MℓM
⊕M ′

ℓM′
= S ⊕ S′ or

MℓM
⊕ (M ′

ℓM′
|| τ ′

α
) = S ⊕ S′.

In all cases, A has to choose MℓM
and M ′

j appropriately to match S or S⊕S′. Furthermore,
recall that this case implies MℓM

6= M ′
j , which rules out the trivial way of finding a collision

for S = S′. Since S and S’ are secret, the success probability for A in either case is at
most 1

2n−q .

Subcase (1.2): XℓM−1 6= X ′j−1. In this case it must hold that Ft(XℓM−1) 6= Ft(X
′
j−1).

This time, we can rearrange our equations from above and see that a collision in XℓM
and

X ′j requires that A must find

Ft(XℓM−1)⊕ Ft(X
′
j−1) = MℓM

⊕M ′
j ⊕ S or

Ft(XℓM−1)⊕ Ft(X
′
ℓM′−1) = MℓM

⊕M ′
ℓM′
⊕ S ⊕ S′ or

Ft(XℓM−1)⊕ Ft(X
′
ℓM′−1) = MℓM

⊕ (M ′
ℓM′
|| τ ′

α
)⊕ S ⊕ S′.
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Since Ft(·) is an ǫ-AXU family of hash functions, the success probability that A can choose
MℓM

and M ′
j appropriately can be upper bounded by ǫ in either case.

Thus, we can upper bound the success probability of A, asking at most q queries of a total
length of ℓ blocks, for Case (1) by

max

{

ℓ · q · ǫ,
q2

2n − q

}

.

Case (2): With Tag-Splitting at MℓM
. Now, the top-row chaining value XℓM

is com-
puted by Ft(XℓM−1) ⊕ (MℓM

|| τα) ⊕ S. For a collision of the form XℓM
= X ′j , it must

hold that

XℓM
=















Ft(X
′
j−1)⊕M ′

j if j < ℓM ′ ,

Ft(X
′
ℓM′−1)⊕M ′

ℓM′
⊕ S′ if j = ℓM ′ , |M ′

ℓM′
| = n,

Ft(X
′
ℓM′−1)⊕ (M ′

ℓM′
|| τ ′α)⊕ S′ if j = ℓM ′ , |M ′

ℓM′
| < n.

Again, note that these cover all possible cases for a collision in XℓM
and X ′j when MℓM

is
padded. For the sake of simplicity, we make A stronger than it is and give it full control
over τα and τ ′α.

Subcase (2.1): XℓM−1 = X ′j−1. Since Ft(·) is a permutation, it must hold Ft(Xi−1) =
Ft(X

′
ℓM′−1). Hence, we can rearrange our equations from above and see that a collision in

XℓM
and X ′j requires that A must find

(MℓM
|| τα)⊕M ′

j = S or

(MℓM
|| τα)⊕M ′

ℓM′
= S ⊕ S′ or

(MℓM
|| τα)⊕ (M ′

ℓM′
|| τ ′

α
) = S ⊕ S′.

In all cases, A has to choose MℓM
and M ′

j appropriately to match S or S⊕S′. Furthermore,
recall that this case implies MℓM

6= M ′
j , which rules out the trivial way of finding a collision

for S = S′. Since S and S’ are secret, the success probability for A in either case is at
most 1

2n−q .

Subcase (2.2): XℓM−1 6= X ′j−1. In this case, it must hold that Ft(XℓM−1) 6= Ft(X
′
j−1).

This time, we can rearrange our equations from above and see that a collision in XℓM
and

X ′j requires that A must find

Ft(XℓM−1)⊕ Ft(X
′
j−1) = (MℓM

|| τα)⊕M ′
j ⊕ S or

Ft(XℓM−1)⊕ Ft(X
′
ℓM′−1) = (MℓM

|| τα)⊕M ′
ℓM′
⊕ S ⊕ S′ or

Ft(XℓM−1)⊕ Ft(X
′
ℓM′−1) = (MℓM

|| τα)⊕ (M ′
ℓM′
|| τ ′

α
)⊕ S ⊕ S′.

Since Ft(·) is an ǫ-AXU family of hash functions, the success probability that A can choose
MℓM

and M ′
j appropriately can be upper bounded by ǫ in either case.
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Similar to Case (1), we can upper bound the success probability of A, asking at most q
queries of a total length of ℓ blocks, for Case (2) by

max

{

ℓ · q · ǫ,
q2

2n − q

}

.

Since Case (1) and Case (2) are mutually exclusive, the success probability of A for the
event COLLlmb is given by the maximum of the success probabilities of the two cases.
Thus, it holds that

Pr
[

COLLlmb
]

≤ max

{

ℓ · q · ǫ,
q2

2n − q

}

.

�
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