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Notation

Set K := {0, 1}k, T := {0, 1}τ , N := {0, 1}ν , R := {0, 1}r, C := {0, 1}c, and C
1
2 :=

{0, 1}c/2. Given the state X ∈ R ×C, Xr ∈ R denotes its rate part and Xc ∈ C its
capacity part. We write 0r ∈ R for a shorthand of 00 · · · 0 ∈ R.

The bitwise XOR operation of the bit strings a1 and a2 is denoted by a1 ⊕ a2, and
a1‖a2 and a1a2 both denote the concatenation of the bit strings a1 and a2.

An element of R is called a block. Let R∗ denote the set of strings whose length is
a multiple of r, at most 2c/2 blocks. Similarly, let R+ denote the set of strings whose
length is a positive multiple of r, at most 2c/2 blocks. Given a plaintext (a message)
M ∈ {0, 1}∗, we divide it into blocks and write M [1]M [2] · · ·M [w] ← M , where each
M [i] for i < w is a block and M [w] is a string of length less than or equal to a block.
By bMcn we denote the n most significant bits of M (the n leftmost bits). When we
write M‖10∗, we mean that M is padded with a 1-bit and then zeros until the length
of the resulting string is a multiple of r.

Authenticated encryption with associated data (AEAD).

An authenticated encryption algorithm with associated data consists of a key gener-
ation K, an encryption E and decryption D algorithms. The encryption algorithm E
takes as input a key K ∈ K, associated data A ∈ R∗, and a message M ∈ R+, and
returns a ciphertext C ∈ R+ and a tag T ∈ T, as (C, T ) ← EK(A,M). The decryp-
tion algorithm D takes as input a key K ∈ K, associated data A ∈ R∗, a ciphertext
C ∈ R+, and a tag T ∈ T, and returns either a message M ∈ R+ or the reject sym-
bol ⊥, as M/⊥ ← DK(A,C, T ). The two functionalities E and D are sound, in the
sense that whenever we encrypt a message as (C, T ) ← EK(A,M), we always get the
message back, not ⊥, via the decryption process M ← DK(A,C, T ).

Nonce-based AEAD.

Whenever the AEAD scheme takes an additional nonce N ∈ N argument both in
encryption and decryption we speak of a nonce-based AEAD. The encryption algorithm
is then defined as (C, T ) ← EK(N,A,M) and the decryption algorithm as M/⊥ ←
DK(N,A,C, T ) with the soundness condition M ← DK(N,A, EK(N,A,M)) satisfied.

Nonces.

A nonce N ∈ N is an unique non-repeating value, i.e. a counter. The nonces in this
work are public values and we alternatively refer to them as public message numbers.
We do not use secret message numbers. How the sender and receiver generate and
synchronize nonces is left implicit as long as the uniqueness condition is satisfied.
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1 Parameters

The authenticated encryption family PRIMATEs is defined by the following two pa-
rameters:

1. The security level s ∈ {10, 15} bytes;

2. The mode of operation Scheme ∈ {GIBBON,HANUMAN,APE}.

The security level determines: the state size b, where the state consists of a rate part
with r and a capacity part with c bits; and the permutation family PRIMATE-s. The
PRIMATE-s : {0, 1}b → {0, 1}b family consists of four permutations p1, p2 , p3 and
p4. On the other hand, each mode of operation determines the key length k, the tag
length τ , the nonce length ν and the subset of permutations from PRIMATE-s.

1.1 Recommended Parameters

We recommend a security level s of either 10 or 15 bytes for PRIMATEs family with:

s = 10 bytes (80 bits) s = 15 bytes (120 bits)

b (state size) 25 bytes (200 bits) 35 bytes (280 bits)

c (capacity size) 20 bytes (160 bits) 30 bytes (240 bits)

r (rate size) 5 bytes (40 bits) 5 bytes (40 bits)

permutations PRIMATEs-80 PRIMATEs-120

Below we recommend the respective values for the three modes where Scheme-
s indicates the mode under s = 10 and s = 15 bytes respectively. For GIBBON and
HANUMAN we have identical values as compared to APE as shown:

GIBBON-s HANUMAN-s APE-s

k (key size) s s 2s

τ (tag size) s s 2s

ν (nonce size) s s s

PRIMATE p1, p2, p3 p1, p4 p1

GIBBON and HANUMAN have a mandatory nonce input while APE supports an op-
tional nonce input. The optional nonce input for APE is of length less or equal
to s bytes. The length of plaintext and associated data processing is discussed in
Sect. 2. Our recommendation for lightweight authenticated encryption is HANUMAN.
For lightweight applications where speed is critical we recommend GIBBON and for
lightweight environments where additional security requirements are needed or security
is critical we recommend APE. The primary recommended security level is s = 15 (120
bit security), whereas we recommend s = 10 (80 bit security) for extremely lightweight
applications.
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Algorithm 1: EK(N,A,M)

Input: K ∈ C
1
2 , N ∈ C

1
2 , A ∈ {0, 1}∗,

M ∈ {0, 1}∗
Output: C ∈ {0, 1}∗, T ∈ C

1
2

1 V ← p1
(
0r‖N‖K

)
2 V ← Vr ‖ (0

c
2 ‖ K)⊕ Vc

3 if A 6= ∅ then
4 V ← p2

(
V
)

5 A[1]A[2] · · ·A[u]← A
6 A[u]← A[u]‖10∗
7 for i = 1 to u− 1 do
8 V ← p2

(
A[i]⊕ Vr ‖ Vc

)
9 end

10 V ← A[u]⊕ Vr ‖ Vc

11 end
12 M [1]M [2] · · ·M [w]←M
13 M [w]←M [w]‖10∗
14 V ← p3

(
V )

15 for i = 1 to w do
16 C[i]←M [i]⊕ Vr

17 V ← p3
(
C[i] ‖ Vc)

18 end

19 V ← p1
(
Vr ‖ (0

c
2 ‖ K)⊕ Vc

)
20 C ← C[1]C[2] · · ·C[w]
21 T ← bVcc c

2
⊕K

22 return (C, T )

Algorithm 2: DK(N,A,C, T )

Input: K ∈ C
1
2 , N ∈ C

1
2 , A ∈ {0, 1}∗,

C ∈ {0, 1}∗, T ∈ C
1
2

Output: M ∈ {0, 1}∗ or ⊥
1 V ← p1

(
0r‖N‖K

)
2 V ← Vr ‖ (0

c
2 ‖ K)⊕ Vc

3 if A 6= ∅ then
4 V ← p2

(
V
)

5 A[1]A[2] · · ·A[u]← A
6 A[u]← A[u]‖10∗
7 for i = 1 to u− 1 do
8 V ← p2

(
A[i]⊕ Vr ‖ Vc

)
9 end

10 V ← A[u]⊕ Vr ‖ Vc

11 end
12 C[1]C[2] · · ·C[w]← C

13 V ← p3
(
V )

14 for i = 1 to w do
15 M [i]← C[i]⊕ Vr

16 V ← p3
(
C[i] ‖ Vc)

17 end

18 V ← p1
(
Vr ‖ (0

c
2 ‖ K)⊕ Vc

)
19 M ‖ 10∗ ←M [1]M [2] · · ·M [w]
20 T ′ ← bVcc c

2
⊕K

21 return T = T ′ ? M : ⊥

Figure 1: The GIBBON encryption EK(N,A,M) and decryption DK(N,A,C, T ) algo-
rithms and without spill over.

2 Specification of PRIMATEs

2.1 GIBBON

The GIBBON algorithm is described in Fig. 1. GIBBON supports variable length as-
sociated data and plaintexts. As discussed in Sect. 3 we recommend the associated
data and the plaintexts to be of size at most 2c/2 bits. For GIBBON-80 this is approx-
imately 277 bytes and for GIBBON-120 this is 2117 bytes. The algorithm uses three
independent permutations, p1, p2 and p3. The key K is used for: 1. a part of the
capacity of the initial state; 2. after the initialization (first p1 iteration); 3. before the
finalization (last p1 iteration); and 4. after the tag truncation. GIBBON works exactly
the same in the case of integral and fractional data. The padded input message (resp.
associated data) is generated by applying 10∗ padding to the original message (resp.
associated data). In the case when |M [w]| = r with M of integral message blocks
instead of occupying an extra message block for this, the ‘10*’-padding spills over into
the capacity. This can be seen as an XOR of 10 · · · 00 into the capacity part of the
state. We recall the reader of the fact that the ⊕1 in the beginning of the function is
a shorthand notation for ⊕00 · · · 01, and hence, these values do not cancel each other
out. The encryption procedure of GIBBON is illustrated in Fig. 6.
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Algorithm 3: EK(N,A,M)

Input: K ∈ C
1
2 , N ∈ C

1
2 , A ∈ {0, 1}∗,

M ∈ {0, 1}∗
Output: C ∈ {0, 1}∗, T ∈ C

1
2

1 V ← p1
(
0r‖N‖K

)
2 if A 6= ∅ then
3 A[1]A[2] · · ·A[u]← A
4 A[u]← A[u]‖10∗
5 for i = 1 to u− 1 do
6 V ← p4

(
A[i]⊕ Vr ‖ Vc

)
7 end

8 V ← p1
(
A[u]⊕ Vr ‖ Vc

)
9 end

10 M [1]M [2] · · ·M [w]←M
11 M [w]←M [w]‖10∗
12 for i = 1 to w do
13 C[i]←M [i]⊕ Vr

14 V ← p1
(
C[i] ‖ Vc)

15 end
16 C ← C[1]C[2] · · ·C[w]
17 T ← bVcc c

2
⊕K

18 return (C, T )

Algorithm 4: DK(N,A,C, T )

Input: K ∈ C
1
2 , N ∈ C

1
2 , A ∈ {0, 1}∗,

C ∈ {0, 1}∗, T ∈ C
1
2

Output: M ∈ {0, 1}∗ or ⊥
1 V ← p1

(
0r‖N‖K

)
2 if A 6= ∅ then
3 A[1]A[2] · · ·A[u]← A
4 A[u]← A[u]‖10∗
5 for i = 1 to u− 1 do
6 V ← p4

(
A[i]⊕ Vr ‖ Vc

)
7 end

8 V ← p1
(
A[u]⊕ Vr ‖ Vc

)
9 end

10 C[1]C[2] · · ·C[w]← C
11 for i = 1 to w do
12 M [i]← C[i]⊕ Vr

13 V ← p1
(
C[i] ‖ Vc)

14 end
15 M ‖ 10∗ ←M [1]M [2] · · ·M [w]
16 T ′ ← bVcc c

2
⊕K

17 return T = T ′ ? M : ⊥

Figure 2: The HANUMAN encryption EK(N,A,M) and decryption DK(N,A,C, T )
algorithms and without spill over.

2.2 HANUMAN

The HANUMAN algorithm is described in Fig. 2. HANUMAN supports variable length
associated data and plaintexts. As discussed in Sect. 3 we recommend the associated
data and the plaintexts to be of size at most 2c/2 bits. For HANUMAN-80 this is
approximately 277 bytes and for HANUMAN-120 this is 2117 bytes. The algorithm uses
two independent permutations, p1 and p4. The key is used twice for: 1. a part of
the capacity of the initial state; and 2. after the tag truncation. The padded input
message (resp. associated data) is generated by applying 10∗ padding to the message
(resp. associated data). In the case when |M [w]| = r with M of integral message
blocks instead of occupying an extra message block for this, the ‘10*’-padding spills
over into the capacity. This can be seen as an XOR of 10 · · · 00 into the capacity part
of the state. The encryption procedure of HANUMAN is illustrated in Fig. 7.

2.3 APE

The APE algorithm is described in Fig. 3. We treat the nonce as the first part of the
associated data whenever present. This is not explicitly reflected in our APE figures
and algorithm where in the presence of nonce A← N‖A. APE supports variable length
associated data and plaintexts. As discussed in Sect. 3 we recommend the associated
data and the plaintexts to be of size at most 2c/2 bits. For APE-80 this is approximately
277 bytes and for APE-120 this is 2117 bytes. The algorithm uses the permutation p1
together with its inverse p−11 for decryption. The key is used twice for: 1. part of
the capacity of the initial state; 2. after the tag generation. The fractional plaintext
data cases are dealt with differently in APE (Fig. 9) as compared to the integral data
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Algorithm 5: EK(A,M)

Input: K ∈ C, A ∈ R∗, M ∈ R+

Output: C ∈ R+, T ∈ C
1 V ← 0r ‖ K
2 if A 6= ∅ then
3 A[1]A[2] · · ·A[u]← A
4 A[u]← A[u]‖10∗
5 for i = 1 to u do
6 V ← p1

(
A[i]⊕ Vr ‖ Vc

)
7 end

8 end

9 V ← V ⊕ (0b−1 ‖ 1)
10 M [1]M [2] · · ·M [w]←M
11 l← |M [w]|
12 M [w]←M [w]‖10∗
13 for i = 1 to w do
14 V ← p1

(
M [i]⊕ Vr ‖ Vc

)
15 C[i]← Vr

16 end
17 C ← C[1]C[2] · · ·C[w − 2]
18 C ← C ‖ bC[w − 1]cl
19 C ← C ‖ C[w]
20 T ← Vc ⊕K
21 return (C, T )

Algorithm 6: DK(A,C, T )

Input: K ∈ C, A ∈ R∗, C ∈ R+, T ∈ C
Output: M ∈ R+ or ⊥

1 IV ← 0r ‖ K if A = ∅ then
2 A[1]A[2] · · ·A[u]← A
3 for i = 1 to u do
4 IV ← p

(
A[i]⊕ IV r ‖ IV c

)
5 end

6 end
7 C[1]C[2] · · ·C[w]← C
8 l← |C[w]|
9 C[w]← dC[w − 1]er−l ‖ C[w]

10 C[w − 1]← bC[w − 1]cl
11 C[0]← IVr

12 V ← p−1
(
C[w] ‖ K ⊕ T

)
13 M [w]← bVrcl ⊕ C[w − 1]
14 V ← V ⊕M [w]10∗‖0c
15 for i = w − 1 to 1 do
16 V ← p−1

(
C[i] ‖ Vc

)
17 M [i]← C[i− 1]⊕ Vr

18 end
19 M ←M [1]M [2] · · ·M [w]
20 if IVc = Vc ⊕ (0c−1 ‖ 1) then
21 return M
22 else
23 return ⊥
24 end

Figure 3: The APE encryption EK(A,M) and decryption DK(A,C, T ) algorithms
where w ≥ 2 and without spill over.

(Fig. 8) as elaborated below:
Consider a message M and denote its last block by M [w], where |M [w]| = |M | mod

r. We distinguish among three cases:

• |M [w]| ≤ r − 1 and w = 1. The procedure can be seen left in Fig. 9. Note that
the corresponding ciphertext will be of r bits. This is required for decryption to
be possible;

• |M [w]| ≤ r − 1 and w ≥ 2. The procedure is depicted right in Fig. 9. Note
that the ciphertext C[w − 1] is of size equal to M [w]. The reason we opt for
this design property is the following: despite M [w] being smaller than r bits, we
require its corresponding ciphertext to be r bits for decryption to be possible.
As a consequence ciphertext C[w − 1] is of size equal to M [w];

• |M [w]| = r. In this special case where M consists of integral message blocks, we
nevertheless need a padding. However, instead of occupying an extra message
block for this, the ‘10*’-padding spills over into the capacity. This can be seen
as an XOR of 10 · · · 00 into the capacity part of the state.

The adjustments have no influence on the decryption algorithm D, except if |M | ≤ r
for which a slightly more elaborate function is needed. Note that the spilling of the
padding in case |M [w]| = r causes security to degrade by half a bit: intuitively, APE
is left with a capacity of c′ = c − 1 bits. We have opted for this degradation over an
efficiency loss due to an additional round.

5



PRIMATEs v1: Submission to CAESAR

2.4 PRIMATE Permutation

One round permutation which is called PRIMATE has two different variants, PRIMATE-
80 and PRIMATE-120, and is inspired by [8]. They are designed according to the wide
trail strategy [11] and their structure is very similar to the Rijndael block cipher [12].
They operate on a 5× 8 and a 7× 8 state of 5-bit elements, respectively. The first row
of the state (5 bytes) is the rate of the state whereas the rest of the state is the capacity
for both versions. The state and each individual element possess big-endian encoding.
PRIMATE update the internal state by means of the sequence of transformations

CA ◦MC ◦ SR ◦ SB .

The four permutations p1, p2, p3 and p4 of PRIMATE are defined by means of different
round constants, which will be generated by a 5-bit LFSR, and different number of
rounds as shown in the following table.

p1 p2 p3 p4

Number of rounds 12 6 6 12

Initial value of the LFSR 1 24 30 24

2.4.1 SubBytes (SB).

The SubBytes step is the only non-linear transformation of PRIMATE. It is a permu-
tation consisting of an S-box applied to each element of the state (shown below for
PRIMATE-80).

a4,0 b4,0

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a4,1 b4,1

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a4,2 b4,2

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a4,3 b4,3

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a4,4 b4,4

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a4,5 b4,5

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a4,6 b4,6

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a4,7 b4,7

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7

ai,j bi,jS-box

This permutation is an almost bent (AB) permutation as defined in Table 1. The
differential and linear probability for this S-box is 2−4, which provides optimum se-
curity against linear and differential cryptanalysis [10]. The specific permutation is
chosen from the AB permutation set such that the area of both plain and shared
implementation provide a good tradeoff.

Table 1: 5-bit S-box.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 1 0 25 26 17 29 21 27 20 5 4 23 14 18 2 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 15 8 6 3 13 7 24 16 30 9 31 10 22 12 11 19
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2.4.2 ShiftRows (SR).

The ShiftRows step is a byte transposition that cyclically shifts the rows of the state
over different offsets. Row i is shifted left by si = {0, 1, 2, 4, 7} positions for PRIMATE-
80 (shown below) and by si = {0, 1, 2, 3, 4, 5, 7} positions for PRIMATE-120. Since
ShiftRows is only wiring in hardware, its overall cost is negligible.

a4,0 b4,0

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a4,1 b4,1

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a4,2 b4,2

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a4,3 b4,3

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a4,4 b4,4

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a4,5 b4,5

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a4,6 b4,6

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a4,7 b4,7

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7

ai,0 ai,1 ai,2 ai,3 ai,4 ai,5 ai,6 ai,7 bi,0 bi,1 bi,2 bi,3 bi,4 bi,5 bi,6 bi,7≪ si

2.4.3 MixColumns (MC).

[h] The MixColumns step is operating on the state column by column. To be more
precise, it is a left-multiplication by a 5×5 (resp. 7×7) matrix over F25 with primitive
polynomial x5 + x2 + 1. The main design goal of the MixColumns transformation is to
follow the wide trail strategy and that it can be implemented efficiently. Therefore,
we use a recursive approach [3, 21] to generate an MDS matrix that has a maximum
(6 and 8 respectively) branch number (the smallest nonzero sum of active inputs and
outputs of each column).

a4,0 b4,0

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a4,1 b4,1

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a4,2 b4,2

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a4,3 b4,3

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a4,4 b4,4

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a4,5 b4,5

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a4,6 b4,6

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a4,7 b4,7

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7
a0,j

a1,j

a2,j

a3,j

a4,j

b0,j

b1,j

b2,j

b3,j

b4,j

⊗


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 18 2 2 18


5

a6,0 b6,0

a5,0 b5,0

a4,0 b4,0

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a6,1 b6,1

a5,1 b5,1

a4,1 b4,1

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a6,2 b6,2

a5,2 b5,2

a4,2 b4,2

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a6,3 b6,3

a5,3 b5,3

a4,3 b4,3

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a6,4 b6,4

a5,4 b5,4

a4,4 b4,4

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a6,5 b6,5

a5,5 b5,5

a4,5 b4,5

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a6,6 b6,6

a5,6 b5,6

a4,6 b4,6

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a6,7 b6,7

a5,7 b5,7

a4,7 b4,7

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7
a0,j

a1,j

a2,j

a3,j

a4,j

a6,j

a7,j

b0,j

b1,j

b2,j

b3,j

b4,j

b6,j

b7,j

⊗



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 2 15 9 9 15 2



7

2.4.4 ConstantAddition (CA).

In this transformation the state is modified by combining the second element of the
second row with a predefined constant by a bitwise XOR operation. The purpose of
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adding round constants is to make each round different and to break the symmetry
of the other transformations. Furthermore, it provides a natural opportunity to make
the parts for processing associated data and message different from each other. A 5-bit
Fibonacci LFSR with taps in the first (i.e. the most significant bit) and fourth bit is
used to generate the round constants rc. Therefore, the hardware implementation of
ConstantAddition is in fact very cheap.

a4,0 b4,0

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a4,1 b4,1

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a4,2 b4,2

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a4,3 b4,3

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a4,4 b4,4

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a4,5 b4,5

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a4,6 b4,6

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a4,7 b4,7

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7

a1,1 b1,1

⊕ rc

3 Security Claims

The designers claim that the following levels of security, expressed in bits:

PRIMATEs-s PRIMATEs-80 PRIMATEs-120

confidentiality of M c/2 80 120
integrity of M c/2 80 120
integrity of A c/2 80 120
integrity of N c/2 80 120

The claimed security levels correspond to the birthday bound security on the capacity
of PRIMATEs-80 and PRIMATEs-120, respectively (see also Sect. 4). The security of
GIBBON and HANUMAN depends on the nonce, while for APE the nonce is optional
and its security results do not rely on uniqueness of the nonce, hence APE is fully secure
against nonce misuse. Technically, this implies that all security results of APE only
hold up to common prefix: under the same associated data and nonce, two messages
with the same prefix (in r-bit blocks) have the same corresponding ciphertext blocks.
We refer to [1] for the technicalities.

The designers claim that APE offers certain additional security benefits. Most
importantly, it is secure under the release of unverified plaintext (RUP). This means
that APE is still secure if the decryption algorithm is implemented so as to output
the decrypted plaintext before successful verification. This scenario arises for example
when devices have insufficient memory to store the entire plaintext [13], or when the
decrypted plaintext needs to be processed early due to real-time requirements [9, 20].
We refer to [2] for more information on the security under the release of unverified
plaintext.

APE-s APE-80 APE-120

confidentiality under RUP c/2 80 120
integrity under RUP c/2 80 120

8
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4 Security Analysis

PRIMATEs are indistinguishable from an ideal authenticated encryption scheme up to
about 2c/2 primitive calls; implying that PRIMATEs achieve a security level of c/2 bits.
This result is proven in the ideal model, where the underlying primitive permutations
PRIMATE are assumed to be perfectly random permutations.

4.1 GIBBON

The structure of GIBBON is similar to the MonkeyWrap [5] construction. The scheme
generates a stream of a ciphertext and a tag depending on the public message number
and the message. Security is achieved as long as the public message number is used
only once with the same key. It is also assumed that if the verification step of the
algorithm reveals that the ciphertext has been tampered with, then the algorithm
returns no information beyond the verification failure. In particular, no plaintext
blocks are returned. A state recovery for GIBBON does not lead to trivial key recovery
and also does not lead to trivial universal forgery attacks due to the key additions.

4.2 HANUMAN

HANUMAN follows a design similar to that of SpongeWrap [7]. The scheme constructs
a keystream which depends on the public message number and message, with which
the message is then XORed to produce the ciphertext. As long as the public message
number remains unique for each encryption, confidentiality will be achieved since the
keystream will be close to uniformly random, assuming the PRIMATE permutations are
close to ideal. Note that if a public message number is repeated, then the XOR of the
first message blocks can be determined from the XOR of the ciphertexts. Associated
data is processed via an independent permutation in order to prevent forgery attacks
in which a message is first encrypted as associated data, and then again as plaintext.
Attacks can be found if a collision occurs in the capacity, yet this is expected to
happen only after roughly 2c/2 total queries to the underlying permutations. It is also
assumed that if the verification step of the algorithm reveals that the ciphertext has
been tampered with, then the algorithm returns no information beyond the verification
failure.

4.3 APE

The security results for APE can be found in [1]. APE is the first and only misuse resis-
tant permutation based authenticated encryption. The security results for APE apply
both in the cases when nonces are unique values (full security) and also when nonces
are reused (full security up to common prefix, the maximum attainable for single pass
schemes). As a mode of operation for a permutation, APE is secure in the ideal model.
Considering a distinguisher whose queries are of total length at most m blocks, APE
is proven secure in the ideal model up to a bound of m2

2r+c + 2m(m+1)
2c

(for integral data

blocks) and m2

2r+c + 2m(m+1)
2c−1 (for fractional data blocks) [1].

We can also look at APE as a mode of operation for a block cipher where we replace
the operation (0r‖K) ⊕ p1 ⊕ (0r‖K) with that of a block cipher (see [1] for a more
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detailed explanation). This version of APE is secure in the standard model, meaning
if the underlying block cipher is a secure strong pseudorandom permutation (SPRP),
then APE with a block cipher is secure as well. The bounds from the ideal model also
hold in the standard model, up to twice the SPRP security of EK . We interpret this
result to mean that if (0r‖K)⊕ p1 ⊕ (0r‖K) with p1 instantiated by a PRIMATE is a
secure SPRP, then APE with a PRIMATE is secure as well.

In the same vein, a formal security proof for APE in the case unverified plaintext
is released is given in [2]. In more detail, in this publication a model is introduced
to analyze security of authenticated encryption schemes in case of unverified release
of plaintext, and APE is proven to meet the security notion with no security loss
(compared to the above-mentioned bounds).

Taking c = 20 bytes (160 bits), r = 5 bytes (40 bits) for APE-80 or c = 35 bytes
(280 bits), r = 5 bytes (40 bits) for APE-120, the security levels approach the ones
claimed in Sect. 3, but not exactly. For instance, for APE-80 we claim 80-bit security,
while the proven security bound (fractional case) satisfies m2

2r+c + 2m(m+1)
2c

= 1
2

for
m ≈ 279.5. Similarly, for the fractional case the security bound equals 1

2
for m ≈ 279.

The difference is due to the security model and proof techniques applied.

4.4 PRIMATE

This section shows some known properties of the non-linear permutation PRIMATE.

4.4.1 Differential and Linear Trails

PRIMATE has diffusion properties according to the wide trail design strategy and hence
provides good bounds against differential an linear cryptanalysis. We use the technique
in [18] to calculate the differential and linear hull probabilities of PRIMATE. Since the
five bit S-box of PRIMATE is an almost bent (AB) permutation, the differential and
linear probability for this S-box is 2−4, which provides optimum security against linear
and differential cryptanalysis [10].

For PRIMATE-80, the branch number of the linear diffusion is 6, differential/linear
probability for any two round can be calculated as 16 · (2−4)6 = 2−20, therefore the
differential/linear probability for any four-round is (2−20)5 = 2−100. For PRIMATE-
120, the branch number of the linear diffusion is 8, therefore the differential/linear
probability for any four-round PRIMATE-120 is bounded by (16 · (2−4)8)7 = 2−196.
Moreover, for a refined bound of PRIMATE, we refer to [16].

This means that the probability of any twelve-round differential (and linear) of
PRIMATE-80 respectively PRIMATE-120 differential, assuming independent rounds, is
2−100 respectively 2−196. Therefore, there is only a very small chance that a standard
differential or linear attack would lead to a successful attack on PRIMATE.

4.4.2 Collision Producing Trails

Assume we have a certain difference for the message that may result in a zero difference
in the state with a high probability after the difference has been injected. Then this
can be used in a forgery attack on PRIMATE. Note that a linear trail of a similar shape
might be used for a distinguish attack on the keystream of PRIMATE.

10
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However, the simple design of PRIMATE allows to prove also good bounds against
this kind of differential and linear attacks. To obtain better bounds for PRIMATE we
adopt the mixed-integer linear programming (MILP) technique proposed in [17] to find
the minimum number of differentially and linearly active S-boxes of the target ciphers.
Using this technique and the optimizer CPLEX [15], we obtained differential and linear
bounds of PRIMATE-80 and PRIMATE-120. The results are listed in Table 2.

Table 2: Bounds for collision producing trails in the message processing of PRIMATE.

Round 1 2 3 4 5 6 7 8 9 10 11 12
Active PRIMATE-80 - - - - - 84 84 84 84 84 84 84
S-box PRIMATE-120 - - - - - 127 127 127 127 127 127 127

For 5 and less rounds of both PRIMATE-80 and PRIMATE-120, there does not exist
such trails and for 6 and more rounds only trails with at least 84 respectively 127 active
S-boxes can produce a collision. This results in an upper bound for the differential
and linear probability of 2−336 and 2−508, respectively.

We want to note that these bounds depends on the choice of the injection layer.
Therefore, we have tested several different injection layers and choose the one that
resulted in the best bound in the design of PRIMATE.

4.4.3 Impossible Differential Cryptanalysis

In this part, we will discuss the application of impossible differential cryptanalysis
to PRIMATE. Since the branch number of the PRIMATE-80 and PRIMATE-120 is 6
respectively 8, the number of nonzero element differences in each column before and
after the MixColumns operation can never be smaller than these values. Based on this
property, we constructed impossible differentials for 6 and 5 rounds of PRIMATE-80 and
PRIMATE-120 respectively, which are depicted in Figure 4 and Figure 5 respectively.

SR

SR

SR

SR−1

SR−1

SB

SB

SB

SB−1

SB−1

MC

MC

MC−1

MC−1

CA

CA

CA

CA

CA

MC

SR−1SB−1
CAMC−1

Figure 4: Impossible Differential for 6 rounds of PRIMATE-80.

Taking PRIMATE-80 as an example, assume we start from the first round, if the dif-
ference is at position (0,0) of the state, then after 2.5 rounds PRIMATE encryption, the
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Figure 5: Impossible Differential for 5 rounds of PRIMATE-120.

vector in column 3 before the MixColumns operation in the third round is (0, ∗, 0, ∗, 0)T ,
whereas “*” denotes a nonzero difference. Given one of the 31 differences in column 1
at the bottom of the distinguisher that result in single difference at position (0,1) be-
fore MixColumns decrypt 3.5 rounds of PRIMATE, the output vector in column 3 after
MixColumns operation in the third round is (∗, ∗, ∗, 0, 0)T . These columns are depicted
in red in Figure 4. This means that M(0, ∗, 0, ∗, 0)T → (∗, ∗, ∗, 0, 0)T , the number of
nonzero differences before and after MixColumns is 5, there is an contradiction. There-
fore, a 6-round impossible differential has been constructed for PRIMATE-80. Similarly
we can obtain a 5-round impossible differential for PRIMATE-120.

Therefore, for PRIMATE-80 and PRIMATE-120, it should be difficult to recover the
key using these impossible differentials even if the internal state (right after the state
initialization) has been recovered.

5 Features of PRIMATEs

Permutation-based AE for lightweight applications.

The PRIMATEs authenticated encryption family is designed for lightweight crypto-
graphic applications. The domain of lightweight cryptography focuses on crypto-
graphic algorithms for extremely constrained hardware devices, where the goal is to
implement an efficient cryptographic algorithm using only a very limited number of
gates.

At the the core of the PRIMATEs family are the PRIMATE permutations. Since
the introduction of the Sponge functions methodology [6], permutation-based crypto-
graphic algorithms are rapidly gaining acceptance due to their efficient implementation
properties. Very recently, the sponge-based hash function Keccak [4] was selected as
the winner of the NIST SHA-3 competition.

The PRIMATE permutation is a substitution-permutation network using a 5-bit
S-box with ideal linear and differential properties, and a recursive MDS matrix, which
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leads to a very small and efficient implementation in hardware.

Resistance against hardware side-channel attacks.

When resistance against hardware side-channel attacks is required, the permutation
has been designed to offer an efficient threshold implementation to counter first-order
DPA attacks, based on glitch-free secret-sharing-based masking.

Online.

All PRIMATEs offer online encryption, thereby allowing the algorithm to output cipher-
text blocks without the knowledge of plaintext lengths or the next plaintext blocks.
PRIMATEs are inherently sequential. For lightweight applications, this is not an issue:
the design goal is to use a very small number of gates, therefore parallelism would not
be of any benefit.

Comparison to AES-GCM.

• GCM-AES is a block cipher based design. In comparison, PRIMATEs are smaller
than similar AEAD algorithms based on a block cipher (such as AES), as our
implementation does not contain a key schedule, uses smaller S-boxes (5 bits
instead of 8 bits), and uses a more compact, recursive MDS matrix implementa-
tion.

• Unlike in AES-GCM, PRIMATEs handle all nonce lengths in the same way,
thereby reducing the complexity of the implementation and simplifying the se-
curity analysis.

• The PRIMATEs modes avoid all the attacks that are inherent to AEAD modes
based on a universal hash function [14,19], such as AES-GCM.

Key and Nonce Agility.

Changing the key or nonce has very little overhead for all modes in the PRIMATEs
family, requiring only one permutation function call and one XOR for GIBBON, and
requires only one permutation function call for HANUMAN. In the case of APE, chang-
ing the key also requires one permutation function call. The nonce is optional in APE.
If a nonce is used, changing the nonce requires ν/r permutation function calls.

Besides the aforementioned features that hold in general for the PRIMATEs algo-
rithm family, several features make specific modes stand out.

Features Specific to HANUMAN, GIBBON or APE.

• HANUMAN is based on the SpongeWrap [6] design strategy. More concretely, it
is the hermetic Sponge design strategy, which means that its underlying permu-
tation should be free of any structural distinguishers.

• GIBBON is intended for lightweight applications where speed is critical and a
formal security proof (based on the security of the underlying permutation) is
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not required. To achieve high throughput, GIBBON employs reduced-round per-
mutations p2 and p3 to process the associated data and message respectively,
next to the full-round permutation p1 used for initialization and finalization.

• APE should be used in applications where additional security is required. Like
HANUMAN, APE is provably secure, based on the security of the underlying per-
mutation. Additionally, APE provides resistance against nonce reuse [1], as well
as resistance against adversaries that can observe the unverified plaintext during
decryption [2]. The price to pay for this additional security is that decryption is
performed backwards using the inverse of the permutation.

6 Design Rationale

The PRIMATEs have been designed with lightweight hardware requirements as present
in constrained devices in mind. For the mode of operation, they follow the principles of
the sponge methodology, more specifically, some of the principles of SpongeWrap and
MonkeyDuplex. The modes of operation are generic and free of weaknesses as justified
by the formal security proofs. For the underlying permutation(s), the PRIMATEs follow
the well-established SPN approach of Rijndael (and its wide-trail design strategy),
based on almost bent S-boxes (attaining best possible differential and linear properties)
as well as MDS diffusion matrices (achieving best possible differential and linear local
diffusion). To favor lightweight implementations of the PRIMATEs, the MDS diffusion
matrices are chosen to be recursive and the S-boxes are 5-bit.

The PRIMATEs family includes three modes: GIBBON and HANUMAN are nonce-
based, while APE has been designed to maintain security under both nonce reuse and
release of unverified plaintext – scenarios which is likely to persist in highly constrained
embedded systems. GIBBON does not follow the hermetic sponge-based design ap-
proach, while both HANUMAN and APE do. This allows GIBBON to be considerably
faster and more energy-efficient. A state recovery for GIBBON does not lead to trivial
key recovery and also does not lead to trivial universal forgery attacks due to the key
additions.

The designers have not hidden any weaknesses in these ciphers.

7 Intellectual Property

The submitters are not aware of any patent involved in PRIMATEs family. Further-
more, PRIMATEs will not be patented. If any of this information changes, the sub-
mitters will promptly (and within at most one month) announce these changes on the
crypto-competitions mailing list.

8 Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection
committee regarding the selection or non-selection of this submission as a second-round
candidate, a third-round candidate, a finalist, a member of the final portfolio, or any
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other designation provided by the committee. The submitter/submitters understand
that the committee will not comment on the algorithms, except that for each selected
algorithm the committee will simply cite the previously published analysis that led
to the selection of the algorithm. The submitter/submitters understand that the
selection of some algorithms is not a negative comment regarding other algorithms,
and that an excellent algorithm might fail to be selected simply because not enough
analysis was available at the time of the committee decision. The submitter/submitters
acknowledge that the committee decisions reflect the collective expert judgments of
the committee members and are not subject to appeal. The submitter/submitters
understand that if they disagree with published analysis then they are expected to
promptly and publicly respond to those analysis, not to wait for subsequent committee
decisions. The submitter/submitters understand that this statement is required as a
condition of consideration of this submission by the CAESAR selection committee.
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Figure 6: The GIBBON mode of operation.
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Figure 7: The HANUMAN mode of operation.
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Figure 8: The APE mode of operation (encryption).
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Figure 9: The APE mode of operation (encryption) for fractional data.

19


