
AEZ v4.1: Authenticated Encryption by Enciphering

Viet Tung Hoang

UC Santa Barbara

tvhoang@engr.ucsb.edu

Ted Krovetz

Sacramento State

ted@krovetz.net

Phillip Rogaway

UC Davis

rogaway@cs.ucdavis.edu

October 15, 2015

The named authors are both designers and submitters.

Abstract

AEZ encrypts by appending to the plaintext a fixed authentication block and then enciphering
the resulting string with an arbitrary-input-length blockcipher, this tweaked by the nonce and
AD. The approach results in strong security and usability properties, including nonce-reuse
misuse resistance, automatic exploitation of decryption-verified redundancy, and arbitrary, user-
selectable ciphertext expansion. AEZ is parallelizable and its computational cost is close to
that of AES-CTR. Our C implementation achieves peak speeds of 0.63 cpb on an Intel Skylake
processor and 1.3 cpb on Apple’s A9 ARM processor.

The latest version of this document, and all related materials, can always be found
on the AEZ homepage: http://www.cs.ucdavis.edu/∼rogaway/aez

Contents

0 Introduction 1

1 Specification 3

1.1 Notation . 3

1.2 Arguments and Parameters . 4

1.3 AEZ Extensions . 4

1.4 Pseudocode . 5

1.5 Usage cap . 9

2 Security Goals 10

3 Security Analysis 13

4 Features 16

5 Design Rationale 19

6 Intellectual Property 19

7 Consent 20

8 Changes 20

References 21

A Specification of BLAKE2b 24

B Specification of AEZ deciphering algorithms 25

Hoang, Krovetz, and Rogaway AEZ v4.1

0 Introduction

This document describes AEZ, which we view as both an enciphering scheme and an authenticated-
encryption scheme. Before specifying it we provide a brief overview.

Authenticated encryption by enciphering. When we speak of an enciphering scheme we mean
an object that is like a conventional blockcipher except that the plaintext’s length is arbitrary and
variable, and, additionally, there’s a tweak. Regarding AEZ in this way, enciphering maps a key K,
plaintext X, and tweak T to a ciphertext Y = Encipher(K,T,X) having the same length as X.
Going backwards, one can recover X = Decipher(K,T,Y). The security property we seek is that
of a tweakable, strong-PRP (pseudorandom permutation): for a random key K it should be hard
to distinguish oracles (Encipher(K, ⋅, ⋅),Decipher(K, ⋅, ⋅)) from oracles (π(⋅, ⋅), π−1(⋅, ⋅)) that realize
a family of independent, uniformly random permutations and their inverse.

When we instead regard AEZ as an authenticated-encryption (AE) scheme, encryption maps key K,
plaintext M , nonce N (also called a “public nonce” or “public message number”), associated
data A, and an authenticator length abytes to a ciphertext C = Encrypt(K,N,A, τ,M) that
is τ = 8 ⋅ abytes bits longer than M . Calling Decrypt(K,N,A, τ,C) returns either a string M
or an indication of invalidity. The security property we seek is that of a robust authenticated-
encryption (RAE) scheme [17], a new and very strong notion that implies protection of the privacy
and authenticity of M and the authenticity of N and A, and must do so to the maximal extent
possible even if nonces get reused (“misuse resistance” [38]), the authenticator length is small
(including zero), or if, on decryption, invalid plaintexts get prematurely released.

Why speak of enciphering when CAESAR is a competition for AE schemes? Because an enciphering
scheme determines an AE scheme by a simple and generic transformation—the encode-then-encipher
method—and the AE scheme one gets in this way has attractive security and usability properties.

Encode-then-encipher encrypts the string M by enciphering a string X that encodes both M and a
block of abytes zero bytes, doing so using a tweak T that encodes N , A, and abytes. Decryption
works by deciphering the presented string (again using the tweak determined from N , A, abytes)
and verifying the presence of the anticipated zero bytes. See Figure 1.

What are these “attractive security and usability properties” to which we allude? (1) If plaintexts
are known a priori not to repeat, no nonce is needed to ensure semantic security. (2) If there’s
arbitrary redundancy in plaintexts whose presence is verified on decryption, this augments authen-
ticity. (3) Any authenticator length can be selected, achieving best-possible authenticity for this
amount of expansion. (4) Because of the last two properties, one can minimize length-expansion
for low-energy or bandwidth-constrained applications. (5) If what’s supposed to be a nonce should
accidentally get repeated, the privacy loss is limited to revealing repetitions in (N,A,M) tuples,
while authenticity is not damaged at all. (6) If a decrypting party leaks some or all of a putative
plaintext that was supposed to be squelched because of an authenticity-check failure, this won’t
compromise privacy or authenticity.

The authors believe that the properties just enumerated would sometimes be worth a considerable
computational price. Yet, for software on capable platforms, the overhead we pay is modest: AEZ
is about as fast as OCB.

1

Hoang, Krovetz, and Rogaway AEZ v4.1

N, A, τ

C

0···0M
τ

AEZ-core

AEZ

AEZ-tiny

Tweak

T T

Figure 1: High-level structure of AEZ. After appending to the message a block of zeros we encipher it
using a tweak comprising the nonce, associated data, and the ciphertext expansion τ = 8 ⋅abytes. How this
happens depends on the length of what’s being enciphered: usually we use AEZ-core, but strings shorter
than 32 bytes are enciphered by AEZ-tiny. Both depend on the underlying key K, which is not shown.

Realizing the enciphering. The way AEZ enciphers depends on the length of the plaintext. If
it’s fewer than 32 bytes we use AEZ-tiny, which builds on FFX [5, 12]. When it’s 32 bytes or more
we use AEZ-core, which builds on EME [15, 16] and OTR [26]. Again see Figure 1.

AEZ-tiny is a balanced-Feistel scheme. Its round function is based on AES4, a four-round version
of AES. Guided by known attacks, more rounds are used for short strings than long ones.

AEZ-core resembles EME mode (“encipher-mask-encipher”) but, for each of the two enciphering
layers, consecutive pairs of blocks are processed together using a two-round Feistel network. The
round function for this is based on AES4. The mask that is injected as the middle layer is deter-
mined, for each pair of blocks, using another AES4 call. The result is an enciphering scheme that
employs five AES4 operations to encipher each consecutive pair of blocks, so 10 AES rounds per
block. Thus our performance approaches that of AES-CTR.

The design of AEZ employs a paradigm we call prove-then-prune. One begins by designing a
cryptographic scheme based on a well-known tool: for AEZ, a tweakable blockcipher (TBC) [24].
One proves security assuming that the tool meets some standard assumption; here, that the TBC is
secure as a tweakable PRP. Finally, the tool—our TBC—is selectively instantiated by a scaled-down
primitive: we will mostly use AES4, a reduced-round version of AES. The thesis underlying this
approach is that it can be instrumental in finding complex but highly efficient schemes; and that if
the instantiation is done judiciously, then the scaled-down scheme retains at least some assurance
benefit flowing from the approach.

The name. The name “AEZ” is not exactly an acronym. The AE prefix is meant to suggest
authenticated encryption and the overlapping EZ suffix is meant to suggest easy, in the sense of
ease of correct use. The AES-like name is also a nod to the fact that AEZ is based on AES and can
likewise be considered a species of blockcipher. Finally, the name can be used to identify individuals
who can’t distinguish an S from a Z.

Easy to use, not to implement. The easiness claim for AEZ is with respect to ease and versatility
of use, not implementation. Writing software for AEZ is not easy, while doing a hardware design

2

Hoang, Krovetz, and Rogaway AEZ v4.1

for AEZ is far worse. From the hardware designer’s perspective, AEZ’s name might seem ironic,
the name better suggesting anti-easy , the antithesis of easy , or anything-but easy !

The difficulty with implementing AEZ in hardware stems from two sources. One is the sheer
complexity of the mode, which glues together two unrelated methods, neither of which is pleasant
in hardware. The more fundamental issue is that the RAE goal that AEZ targets simply can’t
be realized, for arbitrary-length messages, using a single-pass and a constant amount of memory.
Hardware designs routinely expect this. An AEZ implementation must either cap the length of
messages or employ an API and design that makes two passes. Additionally, a sensible hardware
design would probably limit capabilities to AEZ-core, string-valued AD, and the default key length.

1 Specification

1.1 Notation

Numbers and strings. A number means a nonnegative integer, N = {0,1,2, . . .}. A bit is 0 or 1
and a string is a finite sequence of bits. The length of a string X is written ∣X ∣. The empty string ε
is the string of length zero. Concatenation of strings A and B is written AB or A ∥ B. When X
is a string or a bit, Xn means X repeated n times; for example 03 = 000 and (01)2 = 0101. By X ∗
we denote the set of all strings over the alphabet X , including ε. By (X ∗)∗ we denote the set of
all vectors over X ∗, including the empty vector. The bitwise-and, bitwise-or, and bitwise-xor of
strings A and B are denoted A∧B, A∨B, and A⊕B respectively. For operations on unequal-length
strings, first drop the necessary number of rightmost bits from the longer (10⊕ 0100 = 11). For X
a string, let X0∗ = X0p with p the smallest number such that 128 divides ∣X ∣ + p. If ∣X ∣ = n and
1 ≤ i ≤ j ≤ n then X[i] is the ith bit of X (indexing from the left starting at 1), msb(X) =X[1], and
X[i..j] = X[i]⋯X[j]. Let [n] t be the t-bit string representing nmod 2t and let [n] be shorthand
for [n]8; for example [0]16 = ([0]8)16 = 0128 and [1]16 = (00000001)16. A byte is a string of eight
bits. The set of all bytes is denoted Byte. A byte string is an element of Byte∗.

A block is 128 bits. Let 0 = 0128. If X = a1⋯a128 is a block (ai ∈ {0,1}) then we define X≪ 1 =
a2⋯a128 0. For n ∈ N and X ∈ {0,1}128 define n ⋅X by asserting that 0 ⋅X = 0 and 1 ⋅X = X and
2 ⋅X = (X≪1) ⊕ [135 ⋅msb(X)]128 and 2n ⋅X = 2 ⋅ (n ⋅X) and (2n + 1) ⋅X = (2n ⋅X) ⊕X.

AES4 and AES10. We assume familiarity with AES. For K,X ∈ {0,1}128 we write aesenc(X,K)
for a single round of AES: permute X by performing SubBytes then ShiftRows then MixColumns,
then do an AddRoundKey withK. ForK = (K0,K1,K2,K3,K4) a list of five blocks let AES4K(X) =
AES4(K,X) be

aesenc(aesenc(aesenc(aesenc(X ⊕K0,K1),K2),K3),K4) .

For K = (K0,K1, . . . ,K10) a list of 11 blocks define AES10K(X) = AES10(K,X) like we defined
AES4 but composed of ten rounds of aesenc. Note that we do not omit the final-round MixColumns,
as does AES itself, for either AES4 or AES10.

BLAKE2b. AEZ requires a 48 byte key. If the user provides such a key, it is used directly,
otherwise the provided key is transformed into 48 bytes using the cryptographic hash function

3

Hoang, Krovetz, and Rogaway AEZ v4.1

symbol comments

M Plaintext. M ∈ Byte∗

C Ciphertext. C ∈ Byte∗

K Key. K ∈ Byte∗. Recommend ∣K ∣ ≥ 128. Default is ∣K ∣ = 384.
N Nonce (aka: public sequence number). N ∈ Byte∗. ∣N ∣ ≤ 128 recommended

A Associated data. A ∈ (Byte∗)∗. String-valued AD is regarded as a one-element vector

abytes Authenticator length. abytes ∈ N. Default is 16. abytes≤16 recommended.

Figure 2: Arguments and parameters to AEZ. One might consider abytes an argument or a param-
eter: its value is allowed to change during the uses of a key, but conventionally this would not be done.

BLAKE2b [3]. All references to BLAKE2b in this document are specifically references to the
unkeyed hash function named id-blake2b384 in the BLAKE2 Internet Draft [40], which produces
a 48-byte digest. For the sake of completeness, the BLAKE2b function is given in Appendix A.

1.2 Arguments and Parameters

By parameter we mean “a value on which AEZ encryption depends that, independent of any
particular API, would usually to be held constant throughout some long-lived context.” Under
this interpretation of the word, AEZ has five arguments and one parameter. See Figure 2. In
particular, we do not regard keybytes = ∣K ∣/8 as a parameter (we permit keys of any length), nor
npubbytes = ∣N ∣/8 (we permit nonces to have varying lengths, even within a session). While these
two values are omitted from the CAESAR-specified API, they could be specified in a different API.

The authenticator length, abytes, determines how much longer a ciphertext is than its plaintext.
Arbitrary values are allowed, but values exceeding 16 are not expected to provide additional security.
We do not insist that abytes be held constant throughout a session; a user is free to change it
with each encryption. Still, we expect most applications to fix abytes, and choose to regard it as
a parameter. We will use τ = 8 ⋅ abytes if we want to measure ciphertext expansion in bits.

An unusual aspect of AEZ encryption is that it permits vector-valued AD: A ∈ (Byte∗)∗. To
recover the usual setting (a string-valued AD) the user selects an AD A with a single component.

We provide a default value for the abytes parameter: abytes = 16. The only named parameter
set, denoted aez, uses this value. A conforming AEZ implementation is free to select a different
default. In any context where the key length or nonce length are required to be fixed, we select
byte lengths for these of keybytes = 48 and npubbytes = 12. Note that a default key length of
48-bytes does not mean that the designers are targeting 384-bits of security; we most definitely are
not.

1.3 AEZ Extensions

Early versions of AEZ included a parameter extns, a string-valued extensions directive. The intent
was that this would, in the future, unlock capabilities traditionally seen as outside the scope of
an encryption scheme’s functionality, including secret nonces (secret message numbers), plaintext-

4

Hoang, Krovetz, and Rogaway AEZ v4.1

length obfuscation (via a specified padding regime), and encoding ciphertexts into a prescribed
alphabet. These extensions are to be realized by a wrapper that keylessly transforms a plaintext,
AEZ encrypts it, then keylessly transforms the result. We dropped the extns parameter when we
made the AD vector-valued, as the same effect can now be achieved using that feature. A document
defining AEZ extensions will be released later.

1.4 Pseudocode

The definition of AEZ is provided in Figures 3 and 4. Let us explain some aspects of the pseudocode.

Encryption and decryption. To encrypt a string M we augment it with an authenticator—a
block of abytes zero bytes—and encipher the resulting string, tweaking this with a tweak formed
from A, N , and abytes. Next we encipher the augmented message. To decrypt a ciphertext C we
reverse the process, verifying the presence of the all-zero authenticator.

Enciphering. Messages are enciphered by either of two methods. Strings of 1–31 bytes are
enciphered using AEZ-tiny, while those of 32 bytes or more are enciphered using AEZ-core.

Roughly following FFX [5, 12], AEZ-tiny uses a balanced Feistel network. The number of rounds
depends on the length of the plaintext: as few as eight, or as many as 24. The round function is
based on AES4. This is embodied in the pseudocode by the fact that our tweakable PRP decides
to use AES4 or AES10 based on the first component of the tweak, employing the AES10 only for
tweaks beginning with a −1. The Encipher-AEZ-tiny routine is illustrated at the bottom-right if
Figure 5 for the setting where messages have 16 or more bytes.

A novel feature of AEZ-tiny is the possible xoring of a bit into the ciphertext just before the
algorithm’s conclusion. This is done to avoid simple random-permutation distinguishing attacks,
for very short strings, based on the fact that Feistel networks only generate even permutations. A
similar trick, conditionally swapping two fixed points, has been used before [33]. Our approach has
the benefit that the natural implementation is constant-time.

The heart of AEZ is AEZ-core. It melds EME [15, 16], OTR [26], and a variety of other ideas.
Consider the case where we want to encipher a string M =M1M

′
1⋯MmM ′

m MxMy having an even
number of blocks, all of them full. We call the first 2m blocks ofM the i-blocks. Refer to the top-left
and top-right of Figure 5. Regard each rectangle with a pair of numbers as a TBC, the label being
the tweak and the key K left implicit. Each pair of i-blocks MiM

′
i is subjected to a two-round

Feistel network. This both begins the scrambling ofMiM
′
i and yields a value X =X1 ⊕⋯⊕Xm that

is a computational almost-xor-universal hash of M1M
′
1⋯MmM ′

m. The final pair of blocks MxMy

are now processed, but where X initially offsets one of them. This both begins the scrambling
of MxMy and yields the value S that is a computational almost-universal hash of all of M . The
TBC calls of the middle row of the i-blocks now inject an (i, S)-dependent value. Two more Feistel
rounds to each i-block gives C1C

′
1⋯CmC ′m. To compute CxCy we likewise employ two more Feistel

rounds, the Cx value offset by a value Y = Y1 ⊕⋯⊕ Ym analogous to X.

The top-middle panel shows how to deal with messages having an even number of blocks, the last of
these a fragment. Now the message is partitioned into M1M

′
1⋯MmM ′

mMuMvMxMy with all blocks

5

Hoang, Krovetz, and Rogaway AEZ v4.1

100 algorithm Encrypt(K,N,A, τ,M) // AEZ authenticated encryption

101 X ←M ∥ 0τ ; (A1, . . . ,Am) ← A
102 T ← ([τ]128,N,A1, . . . ,Am)
103 if M = ε then return AEZ-prf(K,T, τ)
104 return Encipher(K,T,X)

110 algorithm Decrypt(K,N,A, τ,C) // AEZ authenticated decryption

111 (A1, . . . ,Am) ← A; T ← ([τ]128,N,A1, . . . ,Am)
112 if ∣C ∣ < τ then return �
113 if ∣C ∣ = τ then if C = AEZ-prf(K,T, τ) then return ε else return � fi fi
114 X ← Decipher(K,T,C)
115 M ∥ Z ←X where ∣Z ∣ = τ
116 if (Z = 0τ) then return M else return �

200 algorithm Encipher(K,T,X) // AEZ enciphering

201 if ∣X ∣ < 256 then return Encipher-AEZ-tiny(K,T,X)
202 if ∣X ∣ ≥ 256 then return Encipher-AEZ-core(K,T,X)

210 algorithm Encipher-AEZ-tiny(K,T,M) // AEZ-tiny enciphering

211 m← ∣M ∣; n←m/2; Δ← AEZ-hash(K,T)
212 if m = 8 then k ← 24 else if m = 16 then k ← 16 else if m < 128 then k ← 10 else k ← 8 fi
213 L←M[1 .. n]; R ←M[n + 1 .. m]; if m ≥ 128 then i← 6 else i← 7 fi

214 for j ← 0 to k − 1 do R′ ← L⊕ ((E0,i
K (Δ ⊕ R10∗ ⊕ [j]128))[1 .. n]); L← R; R ← R′ od

215 C ← R ∥ L; if m < 128 then C ← C ⊕ (E0,3
K (Δ ⊕ (C0∗ ∨ 10∗)) ∧ 10∗) fi

216 return C

220 algorithm Encipher-AEZ-core(K,T,M) // AEZ-core enciphering

221 Δ← AEZ-hash(K,T)
222 M1M

′
1⋯MmM ′

m Muv MxMy ←M where ∣M1∣ = ⋯ = ∣M ′
m∣ = ∣Mx∣ = ∣My∣ = 128 and ∣Muv∣ < 256

223 d← ∣Muv∣; if d ≤ 127 then Mu ←Muv; Mv ← ε else Mu ←Muv[1..128]; Mv ←Muv[129..∣Muv∣] fi
224 for i← 1 to m do Wi ←Mi ⊕E1,i

K (M ′
i); Xi ←M ′

i ⊕E0,0
K (Wi) od

225 if d = 0 then X ←X1 ⊕⋯⊕Xm ⊕ 0 else if d ≤ 127 then X ←X1 ⊕⋯⊕Xm ⊕E0,4
K (Mu10

∗)
226 else X ←X1 ⊕⋯⊕Xm ⊕E0,4

K (Mu) ⊕E0,5
K (Mv10

∗) fi
227 Sx ←Mx ⊕Δ⊕X ⊕E0,1

K (My); Sy ←My ⊕E−1,1K (Sx); S ← Sx ⊕ Sy

228 for i←1 to m do S′←E2,i
K (S); Yi←Wi ⊕ S′; Zi←Xi ⊕ S′; C ′i←Yi ⊕E0,0

K (Zi); Ci←Zi ⊕E1,i
K (C ′i) od

229 if d = 0 then Cu ← Cv ← ε; Y ← Y1 ⊕⋯⊕ Ym ⊕ 0

230 else if d ≤ 127 then Cu ←Mu ⊕E−1,4K (S); Cv ← ε; Y ← Y1 ⊕⋯⊕ Ym ⊕E0,4
K (Cu10

∗)
231 else Cu←Mu ⊕E−1,4K (S); Cv←Mv ⊕E−1,5K (S); Y ←Y1 ⊕⋯⊕ Ym ⊕E0,4

K (Cu) ⊕E0,5
K (Cv10

∗) fi
232 Cy ← Sx ⊕E−1,2K (Sy); Cx ← Sy ⊕Δ⊕ Y ⊕E0,2

K (Cy)
233 return C1C

′
1⋯CmC ′m CuCv CxCy

Figure 3: AEZ authenticated-encryption: main routines. The tweakable blockcipher E, the hash
AEZ-hash, and the PRF AEZ-prf are all defined in Figure 4. Requested ciphertext expansion is τ = 8⋅abytes
bits. Algorithm Decipher(K,T,C), not shown, returns the unique M such that Encipher(K,T,M) = C. See
the accompanying text for how this is computed.

6

Hoang, Krovetz, and Rogaway AEZ v4.1

300 algorithm AEZ-hash(K,T) // AXU hash. T is a vector of strings

301 (T1, . . . , Tt) ← T
302 for i← 1 to t do
303 m←max(1, ⌈∣Ti∣/128⌉); j ← i + 2; X1⋯Xm ← Ti where ∣X1∣ = ⋯ = ∣Xm−1∣ = 128
305 if ∣Xm∣ = 128 then Δi ← Ej,1

K (X1) ⊕⋯⊕Ej,m
K (Xm) fi

306 if ∣Xm∣ < 128 then Δi ← Ej,1
K (X1) ⊕⋯⊕Ej,m−1

K (Xm−1) ⊕Ej,0
K (Xm10∗) fi

307 return Δ1 ⊕⋯⊕Δt ⊕ 0

310 algorithm AEZ-prf(K,T, τ) // PRF used when M = ε

311 Δ← AEZ-hash(K,T)
312 return (E−1,3K (Δ) ∥ E−1,3K (Δ⊕[1]128) ∥ E−1,3K (Δ⊕[2]128) ∥ ⋯)[1..τ]

400 algorithm Ej, i
K (X) // Scaled-down TBC

401 I ∥ J ∥ L← Extract(K) where ∣I ∣ = ∣J ∣ = ∣L∣ = 128
402 K ← (0, I, J,L, I, J,L, I, J,L, I)
403 if j = −1 then return AES10K(X ⊕ iJ)
404 k ← k1 ← (0, J, I, L, 0); k2 ← (0, L, I, J, L)
405 if j = 0 then Δ← iI; return AES4k(X ⊕Δ) fi
406 if 1 ≤ j ≤ 2 then Δ← (23+⌊(i−1)/8⌋ + ((i − 1)mod 8))I; return AES4kj(X ⊕Δ) fi
407 if j ≥ 3 and i = 0 then Δ← 2j−3 ⋅L; return AES4k(X ⊕Δ) ⊕Δ fi

408 Δ← 2j−3 ⋅L⊕ (23+⌊(i−1)/8⌋ + ((i − 1)mod 8))J ; return AES4k(X ⊕Δ) ⊕Δ

410 algorithm Extract(K) // Map key to subkeys

411 if ∣K ∣ = 384 then return K
412 else return BLAKE2b(K)

Figure 4: AEZ’s hash, PRF, TBC, key-derivation algorithms. The last carries out key processing that
an implementation would normally do at session-setup. Procedure Extract calls BLAKE2b, which returns
a 48-byte digest. An alternative “scaled-up” algorithm, AEZ10, would redefine E by setting Ej,i

K (X) =
AESK(X ⊕ iI ⊕ jJ) where I = AESK(0) and J = AESK(1), now restricting keys to {0,1}128.

full except Mv, which will have 1–15 bytes. The Figure 5 trapezoids used to process Mv denote 10
∗

padding (top and bottom) and truncation (middle). The value X = X1 ⊕⋯⊕Xm ⊕Xv ⊕Xu now
includes contributions from Xu and Xv, and similarly for Y = Y1 ⊕⋯⊕ Ym ⊕ Yu ⊕ Yv.

Messages with an odd number of blocks are handled similarly, with the v-column omitted and the
padding and truncation, if needed, moved to the u-column. We say “if needed” because no padding
or truncation is used if the u block is full (ie, an odd number of blocks, all of them full).

Let us call this construction just given AEZ-core[E]. It is the generalization of AEZ-core that
employs an arbitrary tweakable blockcipher E. It should not be surprising that the construction is
a strong-PRP under the assumption that the TBC used is secure as a tweakable-PRP. We prove
this in the academic paper corresponding to this submission [17].

At this point we could instantiate E using a standard TBC based on AES: the XE method [24, 36]
would do, yielding the scheme AEZ10 specified in the caption of Figure 4. We would then have a
provably-secure enciphering scheme (for strings of 32 or more bytes) costing about five AES calls
per pair of blocks, so 2.5 AES calls per block. The cost would be similar to EME [15, 16]: 0.5 more
AES calls per block, but avoiding the repeated doubling and the use of AES-inverse.

But suppose we shatter our abstraction boundary and look at all that is going on to encipher M

7

Hoang, Krovetz, and Rogaway AEZ v4.1

Mv

C v

M1 M1

C1 C1

X1

S

M
x

My

C
x

Cy

-1, 1

Mm Mm

Cm Cm

Xm

Y1

S S

’’

’’

Tm -1T1

TmT1

L R

L R

X

S-1, 5

0, 5

0, 50, 00, 0

2, 1 2, m

0, 0 0, 0

0, 11, 1 1, m

1, m1, 1 0, 2

i+2, 1 i+2, m−1

Y

∆i

-1, 2

∆

∆

∆⊕ 1
0, 6

0, 6

0, 6

0, 6

0, 6

0, 6

0, 6

0, 6

∆⊕ 0

∆⊕ 3

∆⊕ 2

∆⊕ 6

∆⊕ 5

∆⊕ 7

X
v

Y
v

Ym

* *

∆⊕ 4

...

10*

...

...

Cu

-1, 4

0, 4

0, 4

S

X
u

Y
u

Mu

∆i

Tm

Tm -1

i+2, 1 i+2, m−1

i+2, m

i+2, 0

Figure 5: Illustration of AEZ enciphering. Rectangles with pairs of numbers are tweakable blockciphers,
the pair being that tweak (the key, always K, is not shown). Top row: enciphering a message M of (32
or more bytes) with AEZ-core. The i-block (top left) is used for the bulk of the message, but the xy-block
(top right) comprises the last 32 bytes, while the uv-block (top middle) comprises the prior 0–31 bytes. (The
picture shows a uv-block of 17–31 bytes.) Bottom left: AEZ-hash computes Δ = ⊕Δi from a vector-
valued tweak encoding A, N , and abytes. Its i-th component T1⋯Tm is hashed as shown. Bottom right:
AEZ-tiny, when operating on a string M = L ∥ R of 16–31 bytes. More rounds are used if M has 1–15 bytes.

in AEZ10. Then the design starts to seem like major overkill: each block Mi is subjected to 30
rounds of AES (ten shared with a neighboring block), plus additional AES rounds to produce the
unpredictable, M -dependent value S that gets injected into the process while 20 rounds yet remain.

In light of such overkill, AEZ-core selectively prunes some of the AES calls that AEZ10 would
perform, using AES4 in their place. In particular, we prune invocations where we are trying to
achieve computational xor-universal hashing. We leave enough AES rounds so that each block Mi

is effectively processed with 12 AES rounds, eight of these subsequent to injection of the highly-
unpredictable S and four of them shared with a neighboring block. The key steps in calculating S
are not pruned, nor the TBC used to mask u- and v-blocks.

Tweak processing. So far we have not mentioned the processing of the tweak T built from N

8

Hoang, Krovetz, and Rogaway AEZ v4.1

and A. This is shown in the bottom-left of Figure 5. First we compute a hash AEZ-hash on T to
create a value Δ; and then Δ is injected into AEZ-tiny and AEZ-core processing as shown.

Deciphering. We define Decipher(K,T,Y) as the unique X such that Encipher(K,T,X) = Y .
Logically, this is all we need say for the specification to be well-defined, so we omit writing out
the implementing pseudocode in the body of this specification document. Still, we write it out in
Appendix B, and explain here the needed changes in pseudocode. The reason the change is small
is that enciphering and deciphering are highly symmetric for both AEZ-tiny and AEZ-core.

AEZ-tiny deciphering is identical to AEZ-tiny enciphering except that we must count backwards
instead of forwards, and we must do the only-even-cycles correction (line 215) at the beginning
instead of the end. Specifically, a routine Decipher-AEZ-tiny(K,T,M) (the M now representing
ciphertext) is identical to Encipher-AEZ-tiny(K,T,M) except that line 214 is changed to count
from k − 1 down to 0, while for line 215 has each C replaced by M before moving the line up to
just after line 212.

AEZ-core deciphering is identical to AEZ-core enciphering except that we must take the xy-tweaks
in reverse order. Specifically, a routine Decipher-AEZ-core(K,T,M) (the M now representing
ciphertext) is identical to Encipher-AEZ-core(K,T,M) except we swap tweaks (0,1) and (0,2),
and we swap tweaks (−1,1) and (−1,2). These four tweaks appear at lines 227 and 232.

PRF. Using the Carter-Wegman approach, we also build a PRF AEZ-prf: counter-mode is em-
ployed to extend the output length if abytes > 16. The PRF is only used for the special case
of enciphering the empty message. This is done for efficiency reasons—to make AEZ-prfK(X) =
Encrypt(K,ε,X, τ, ε) an attractive PRF.

Key processing. For the users’ convenience, AEZ allows keys of any length. Using procedure
Extract, the provided key is processed into 48 bytes, if it is not already of that length, using a
cryptographic hash function.

Tweakable Blockcipher. The TBC Ej,i
K (X) takes a tweak (j, i) ∈ ({−1,0}×[0..7] ∪ {1,2,3} ×N.

The first component selects between AES10 (when j = −1) and AES4 (when j ≥ 0). Either way,
the construction is based on XE [24, 36]. A small amount of precomputation (to compute J , 2J ,
4J , I, 2I, and 4I) will suffice.

1.5 Usage cap

We impose a limit that AEZ be used for at most 248 bytes of data (about 280 TB); by that time,
the user should rekey. For the purpose of this requirement, we say that, when encrypting (N,A,M)
with a given key K, AEZ is acting on ⌈∣N ∣/8⌉+⌈∣A∣/8⌉+⌈∣M ∣/8⌉ bytes. The above requirement stems
from the existence of birthday attacks on AEZ, as well as the use of AES4 to create a universal
hash function.

9

Hoang, Krovetz, and Rogaway AEZ v4.1

2 Security Goals

Nonce-reuse security. AEZ achieves nonce-reuse misuse-resistance (MRAE), as previously de-
fined by Rogaway and Shrimpton [38]. In an MRAE scheme, repeating a nonce will violate privacy
only insofar as repetitions of (N,A,M) triples will be identified as such. It will not compromise
authenticity at all. SIV [38] is the best-known MRAE scheme.

Some researchers call AE schemes nonce-reuse misuse-resistant more broadly, encompassing schemes
that achieve much weaker notions, like those that leak the longest common block-aligned prefix (for
some fixed and typically small blocksize). Such notions were invented to approximate best-possible
security for online schemes, which they do rather inexactly. MRAE schemes can’t be online.

Exploitation of embedded novelty. MRAE security implies automatic exploitation of random-
ness or sequence numbers present in messages: in any context where messages are known to be
distinct (eg, a sequence number is embedded somewhere within) or are extremely unlikely to collide
(eg, a freshly-generated session key is embedded somewhere within), use of a nonce unnecessary.
In such settings, omission of a nonce does not represent misuse; it is a sound way to encrypt.

Exploitation of domain-specific redundancy. In many contexts, plaintexts have a certain
expected structure. This might arise because the message was produced by or for a particular
protocol. We intend that if the user checks for the anticipated structure and regards messages as
inauthentic if they don’t comply, then this check augments authenticity and correspondingly lessens
the need for the nominal redundancy that is inserted by AEZ before enciphering (that is, the extra
abytes zero bytes). The concept of automatically exploiting redundancy present in plaintexts
to achieve authenticity is well known in cryptographic folklore, where it has often been wrongly
assumed, and demonstrably achieved for AE based on a strong-PRP [4].

Releasing unverified plaintext. When decrypting, an unverified plaintext is a string that will
be released if the ciphertext is deemed authentic, but is supposed to be quashed otherwise. While
not definitionally mandated, AE schemes routinely compute such a thing. One form of encryption-
scheme misuse is to release some or all of the unverified plaintext despite the ciphertext’s invalidity.
This might happen because of an incremental decryption API or a more traditional side-channel.

Contemporaneous work by Andreeva et. al gives definitions to formalize an AE scheme’s security
against release of unverified plaintexts [1]. Our own definitional approach is different; we formalize
robust AE, which incorporates the unverified-plaintext concern among its aspects. In claiming
robust-AE security for AEZ the unverified plaintext is the value X computed at line 114. Achieving
robust AE implies that no harm would come of returning (X,�) instead of � at line 116.

Per-message nonce-length and parameter authentication. No security problems result from
employing nonces of varying lengths during a session, nor from changing the authenticator length
abytes during a session. Of course accessing such capabilities would require an appropriate API.

Good security for low ciphertext expansion. Traditionally, AE security definitions “give up”
when the adversary forges. This means that, at least definitionally, it’s OK for a scheme to fail
catastrophically when it first fails. A consequence is that authentication tags need to be so long
that forgeries almost never occur. Yet there are applications where an occasional forgery is fine. For

10

Hoang, Krovetz, and Rogaway AEZ v4.1

example, in some settings it ought to be fine to use a one-byte authenticator: while the adversary
will have a 2−8 chance of forging a given message, we could still expect that, say, a reasonable
adversary won’t have much more than a 2−80 chance to forge ten consecutive messages.

AEZ permits short authentication tags, getting security as strong as possible given the selected
authenticator length. This implies that we must use a new definition for AE, one that does not
give up when a forgery occurs. It is described next.

Robust AE. Our new security definition for AE formalizes that one is doing as good a job as
possible for a given value τ of ciphertext expansion (τ = 8 ⋅ abytes). The statement is required
to hold even in the face of decryption leaking some specified information. An academic paper
corresponding to this submission [17] defines and investigates this notion of robust AE (RAE).
Here we sketch the idea.

We restrict attention to AE schemes Π = (K,E ,D) that operate on strings of any length and that
are τ -expanding, ∣EN,A

K (M)∣ = ∣M ∣ + τ , for a user-selectable τ ∈ [0..τmax]. We first consider an
adversary that has access to one of two pairs of oracles. In the real setting the encryption oracle
encrypts according to E and the decryption oracle decrypts according to D. In the ideal setting
the encryption oracle, asked (N,A, τ,M), returns πN,A,τ(M) where, for each N,A, τ , the function
πN,A,τ is a uniformly selected random injection from m-bit strings to (m+ τ)-bit ones. All of these
functions are chosen independently. The decryption oracle, given (N,A, τ,C), checks if there’s
an M such that πN,A,τ(M) = C. If so, it returns M . Otherwise it returns the distinguished value �.
The above notion coincides with that of a pseudorandom injection (PRI) that has been updated
to regard τ as in input. To arrive at the more general notion of an RAE scheme, we modify how
decryption works in the ideal setting. This is unchanged when (N,A, τ,C) is valid (that is, when
there is an M such that πN,A,τ(M) = C), but when it’s not, a simulator S gets to return what
it wants. The return value may be based only on N,A,C, τ and any saved state of S. The real
decryption algorithm D can now be augmented to capture any desired leakage when the ciphertext
is invalid: have algorithm D return what it wants, as long as it is recognizably invalid (eg, we can
require that the length of the unverified plaintext not be ∣C ∣ − τ bits). The notion is stronger than
before insofar as not only must the scheme approximate a PRI with respect to valid ciphertexts,
but, when they’re invalid, the simulator must still be able to approximate that which D returns.

While the simulator S and invalid-message-returning D strengthen the RAE notion relative to the
PRI notion, the key aspect, we think, is simply our insistence that encryption looks like a PRI even
in the case that the ciphertext expansion is zero or small. In fact, when the ciphertext expansion
is large, the PRI notion and the MRAE notion effectively coincide [38]. On the other hand, when
ciphertext expansion is zero, the RAE (and PRI) notion coincides with that of a strong-PRP. RAE
security can be thought of as a way to bridge strong-PRP security and MRAE security, coinciding
with the former when τ is zero and the latter when τ is large.

Provable security. AEZ has been developed using the tools of provable security. The paradigm
used is what we call prove-then-prune. First, a scheme is designed and proven secure when its
underlying cryptographic tool—a tweakable blockcipher (TBC), in the case of AEZ—meets some
well-established security definition. At that point one could instantiate the primitive with a con-
ventional tool—eg, using AES and the XE construction [24, 36], as we described for AEZ10. One
would then have a scheme with a customary provable-security claim. Instead, to make our scheme

11

Hoang, Krovetz, and Rogaway AEZ v4.1

Security goal Query complexity Time complexity Approx formula

Confidentiality of plaintext 55 128 s2/2110 + t/2128

Authenticity of plaintext 55 128 s2/2110 + t/2128

Authenticity of AD 55 128 s2/2110 + t/2128

Authenticity of the nonce 55 128 s2/2110 + t/2128

Robust AE 55 128 s2/2110 + t/2128

Figure 6: Security goals for AEZ with default parameters (aez). Query complexity is log base-2
of blocks queried: one needs about 255 blocks before having a good chance to violate the goal. Time
complexity is log base-2 of cycles: one needs about 2128 time to break the goal if one has only small amount
of plaintext/ciphertext. The formula bounds adversarial advantage as a function of queried blocks (s) and
time (t) by a known, modest-size adversary. The final row, RAE security, not only implies the other rows
but also nonce-reuse misuse-resistance: AEZ provides maximum-possible robustness against nonce reuse.

faster, we choose to selectively instantiate some of the TBC calls with a construction based on
AES4, a four-round version of AES. Insofar as AES4 is not secure as a PRP (and, additionally, our
method of tweaking it is not always XE), this step is effectively heuristic.

We call the instantiation of a scheme using a mixture of full and downgraded primitives the scaled-
down design. In contrast, using a conventional construction for the primitive would yield the usual,
scaled-up design. AEZ is a scaled-down realization of ÃEZ. It is a thesis underlying our design
methodology that the approach is useful both to discover good schemes and to have some measure
of assurance for them.

Quantitative security statements. For the scaled-up version of AEZ with default parameters,
we expect that an adversary cannot be exhibited that violates RAE security with advantage ex-
ceeding 4s2/2128 + t/2128 where s is the total number of 16-byte blocks of messages encrypted or
authenticated (plus 3 blocks per message, by convention) and t is the time (including the descrip-
tion size) in which the adversary runs. The second addend is a stand-in for an advantage term
associated to breaking the PRP security for the underlying blockcipher. Constants 3 and 4 are the
result of ongoing analysis. The number of encryption and decryption queries does not appear in
the formula above because we have folded them into s.

For aez itself, the formula should be replaced by 4s2/2113 + t/2128 because of the higher maximal
expected differential probability of AES4 [20] compared to an ideal hash or cipher.

Many authors prefer to think of security in terms of number-of-bits. We would summarize the
4s2/2113 < s2/2110 term of the last formula by saying that aez is expected to have 55 bits of
security. We warn that when an author makes a claim like “GCM has 128 bits of security” the
focus is time complexity, imagining a fixed and small amount of ciphertext. When saying that we
have at least 55 bits of security we are speaking exclusively of query complexity: that an adversary
must gather roughly 255 blocks (259 bytes) worth of ciphertext before it has a good chance to
break RAE security (assuming an explicitly given attack of reasonable description size and time
complexity). Recall our usage cap, that AEZ should be used for at most 248 bytes. One might
summarize targeted security goals for aez as shown in Figure 6.

12

Hoang, Krovetz, and Rogaway AEZ v4.1

Non-goals. We have not tried to achieve security beyond the birthday bound; like traditional
modes of operation based on a 128-bit blockcipher, there certainly are easy distinguishing and
forging attacks by the time the adversary queries AEZ with about 264 blocks of message, AD,
or nonce. Similarly, we are not targeting time-complexity security in excess of what is inherent
in employing a 128-bit key. (That said, we avoid the obvious 2128-time brute-force attack for
keys in excess of 128 bits by processing arbitrary-length keys to 48-byte subkey material in our
key extraction processing.) We did not target related-key-attack security, although our use of a
cryptographic hash function for keys not of 48 bytes suggests that we will achieve that end for
strings of all other lengths.

Warning. Robust AE should not be understood as blanket permission to omit a nonce or allocate
too few bits for ciphertext expansion. Let us elaborate.

In the context of AE, misuse resistance (MR) has, of late, been brandished far too liberally, with
some authors going so far as to call their online AE schemesmisuse resistant, or even nonce free. We
disapprove. Online AE schemes can never be misuse-resistant in the sense originally defined [38],
and, what is worse, it is unclear that they imply any useful guarantee when nonces repeat. The
definitions here [14] are deceptive, sounding stronger than they are [18].

We worry that the expansion of the term “misuse resistance” to online schemes may wrongly signal
that there are online AE schemes where nonces are effectively optional. We wish to emphasize
that, even with RAE, nonces still should not be construed as optional in the absence of supporting
analysis. Specifically, a nonce must be used unless one has certitude that, even in the presence of the
adversary, all encrypted (Ai,Mi) pairs will be distinct; or else one has some other domain-specific
reason to believe that, for the given context, leaking plaintext-equality is not problematic.

In a similar vein, AEZ allows little or no ciphertext expansion. But the adversary’s per-message
forging probability increases with decreasing redundancy. Applications should not reduce abytes
to zero or some other small value without ensuring that, combining the abytes zero bytes with
any decryption-verified redundancy, there remain enough total bits r of redundancy that forging
each message with probability 2−r is alright.

3 Security Analysis

An academic paper corresponding to this submission [17] gives the relevant security proofs for AEZ.
Here we summarize some of our results. All are in the provable-security tradition (as opposed to
our making cryptanalytic claims).

Ciphertexts of at least one block. Let ÃEZ[E] be the generalization of AEZ where each E is
a tweakable blockcipher (TBC) of the correct signature [24]. We can prove that ÃEZ[E] achieves
RAE security as long as E is secure as a tweakable PRP. The claim assumes that ∣M ∣ + τ ≥ 128
for each encryption query employing plaintext M , and ∣C ∣ ≥ 128 for each decryption query of a
ciphertext C. These conditions hold automatically for the default choice of abytes = 16. With
those provisos, RAE security can be proven along the following lines.

AEZ-core provides a length-preserving, variable-input-length, strong PRP on Byte≥32 (strings

13

Hoang, Krovetz, and Rogaway AEZ v4.1

of 32 or more bytes) with birthday-bound distinguishing advantage. This statement requires
only chosen-plaintext-attack PRP security for the underlying TBC.

The tweak provided to Encipher-AEZ-core is incorporated by what can be regarded as the
XEX construction [24, 36]. The underlying hash function, AEZ-hash, is almost-xor universal
(AXU) when E is a PRP.

The round functions of AEZ-tiny are derived from a tweakable blockcipher (TBC) with tweak
space T = {(i,0) ∣ i = 1, . . . ,24}. We employ the XE construction [24, 36] to extend the
tweak space to T × N × A. One can then view that, for each (N,A), we use independent
round functions. Since a 6-round Feistel network on {0,1}2n already yields a strong PRP
with birthday-bound distinguishing advantage [22, 31, 32], AEZ-tiny gives a length-preserving,
strong tweakable-PRP on Byte≥16∩Byte≤31, with birthday-bound distinguishing advantage.

Once one has shown that the Encipher procedure of ÃEZ provides a length-preserving strong
tweakable-PRP then ÃEZ itself is a robust-AE scheme. This follows from a generic result that
asserts that encode-then-encipher conversion gives RAE security.

The choice of our TBC is heuristically justified as follows.

The processing of the tweaks to compute the XE offsets only requires a universal hash,
and four-round AES with independent, uniformly random subkeys is already known to be
a good AXU hash [20]. Similarly, the AXU security for AEZ-hash can be justified by viewing
AEZ-hash as an approximation of a variant in which the subkeys are chosen uniformly and
independently from {0,1}128 ⋅4 × {0128}. That variant of AEZ-hash is again AXU due to the
fact that four-round AES with independent, uniformly random subkeys is an AXU hash [20].

For AEZ-core, when processing each pair of blocks Mx and My, the first and last rounds only
need to be AXU, due to the classic result of Naor and Reingold [28]. Then, for the four-round
Feistel networks that process Mi and M ′

i with i ≥ 1, we heuristically use AES4 for the round
function, since, even then, each ciphertext block Ci is processed with 12 AES rounds (four
of which are shared with a single neighboring block), eight of which are subsequent to full
mixing, and all of which are subsequent to the position-dependent masking.

For AEZ-tiny we are effectively using a minimum of 32 = 8 ⋅ 4 rounds of AES. While AES4
is not itself a good PRF, it would seem to be a stronger round function than those used by
most conventional Feistel-based designs.

Let ε be the maximum expected differential probability of (independently-keyed) AES4; this is
known to be at most (52/234)4 ≈ 2−113.088 [20]. While ÃEZ achieves RAE security with birthday-
bound security in the blocksize, AEZ only achieves RAE security with advantage about σ2 ⋅ε, where
σ is the number of blocks that the adversary queries. There are corresponding attacks. As a simple
example, let abytes = 16 and have an adversary repeatedly ask to encrypt a fixed message M with
a fixed nonce N but using AD values that consist of two random blocks. A collision in ciphertexts
will be found in about 1/√ε expected queries. Say it arose from AD values of A = A0A1 and
A′ = A′0A

′
1. Then test if one again gets a collision with M and N but with AD values of either

A ∥ 0 or A′ ∥ 0. If so, one almost certainly has a “real” encryption oracle.

14

Hoang, Krovetz, and Rogaway AEZ v4.1

Security of AEZ-prf. If AEZ-hash is an AXU hash and AES10 is a good PRF then AEZ-prf
is a PRF, as AEZ-prf is constructed from the Carter-Wegman paradigm [8], with output length
expanded via counter mode of AES10 for abytes > 16. Alternatively, for the default abytes = 16,
one can view AEZ-prf as an approximation of an AES-based PMAC [7] in which all but the final
blockcipher call have had the number of AES rounds reduced from 10 to 4, a heuristic employed in
ALRED, MARVIN, and PELICAN [9, 10, 39, 41]. This gives another heuristic justification for the
scaling down from AES10 to AES4 in AEZ-hash.

Ciphertexts of less than one block. The claim that Encipher-AEZ-tiny gives a tweakable,
strong PRP over Byte≤15 is heuristically justified. Consider a collection of independent, ideal, k-
round Feistel networks on {0,1}2n; the round functions are all uniformly random and independent.
The best attack known that distinguishes them from a family of independent, truly random even
permutations, requires at least 2(k−4)n plaintext/ciphertext pairs [30]. From our choice of the
number of rounds, this attack needs at least 272 plaintext/ciphertext pairs, and thus doesn’t violate
our security goals.

There are of course many provable-security results on balanced Feistel as well, but proven bounds
for a fixed-round Feistel network operating on an m-bit string vanish at about 2m/2 queries, and
we are looking at settings with m as small as 8.

Key scheduling and AES4/AES10 details. For the analysis above we sometimes pretended
that the subkeys for AES4 (excluding the XE offsets) are independent of other keys. In the imple-
mentation, to reduce context size, all subkeys are made from three blocks: I, J , and L. Associated
to this choice, we elect to determine these from the underlying key K in a more conservative manner
than with the AES key-scheduling algorithm, which we do not employ at all.

In defining AES4 and AES10 subkeys, the initial and final subkeys are sometimes taken to be
zero. In most cases arguments can be given that the simplification is without adverse consequence.
Cascading a post-whitened permutation with a pre-whitened one seems redundant. If prewhitening
is used from the XE construction then little benefit is gained from an initial round key. If one is
aiming to construct an AXU hash function, postwhitening is pointless. Pleasantly, using zero
as a final AES4 round key frees up the xor included in the aesenc instruction to do the other
computational work needed for Feistel.

AES4 and AES10 do not omit the final-round MixColumns, as AES itself does. In the context of
repeated AES4 applications, omission of the final MixColumns would likely decrease security. See
Dunkelman and Keller for some work in this direction [11]. And the AES designers’ motivation for
removing the MixColumns step from the last round of AES is for us moot: the inverse AES cipher
is never used.

We emphasize that the E construction is not secure as a tweakable-PRP; four AES rounds of AES
is not sufficient for that purpose. This is where the scaling-down has occurred. One only gets a
tweakable PRP by moving to the construction described for AEZ10.

For key scheduling, the cryptographic hash function BLAKE2b is used by Extract to create the
three 128-bit subkeys I, J,L from the arbitrary-length key K provided. We dispense with calling
BLAKE2b if the key K is already 3 ⋅128 bits. Applying a variable-output-length hash function is a
conceptually simple way to accomplish the needed key scheduling. The specific choice of BLAKE2b

15

Hoang, Krovetz, and Rogaway AEZ v4.1

operation
m≥2 even m≥2 even m≥3 odd m≥3 odd m=1 m=1 m=1 m=2
d=128 d<128 d=128 d<128 d=8 d=16 d≥24 d<128

encipher or decipher a m+0.8 m+2.4 m+1.6 m+1.6 10 6.8 4.4 3.2
(3.6) (3.6) (3.6) (3.6) (10) (6.8) (4.4) (3.2)

encrypt or decrypt b m+3 m+3 m+2.2 m+3.8 3.6 3.6 3.6 5
(3.6) (3.6) (3.6) (3.6) (3.6) (3.6) (3.6) (4)

reject invalid ciphertext b 0.4m+2.4 0.4m+2 0.4m+2.4 0.4m+2 0 0 0 3.6
(2.8) (2.8) (2.8) (2.8) (0) (0) (0) (3.6)

Figure 7: Efficiency of AEZ. Worst-case computational work (and, parenthesized, latency) measured in
AES-equivalents, defined as ten AES rounds. The nonempty string X being operated on has m = ⌈∣X ∣/128⌉
blocks, the possibly-fragmentary last one having 1 ≤ d ≤ 128 bits. Assumptions: (a) Key already setup,
nonce and AD already processed. (b) Key already setup, AD already processed, nonce has 16 or fewer bytes,
abytes = 16. Other tasks: Key setup: 1.2m (0.4), assuming all needed constants have been precomputed.
Process string-valued AD: 0.4m (0.4) (key already setup, nonce of 16 or fewer bytes).

is motivated by our intent to ultimately surround AEZ by a wrapper that supports slow and
memory-intensive key processing using Argon2 [6], the winner of the password-hash competition.
That algorithm is itself based on BLAKE2b, making it the most natural choice for AEZ. That said,
we regard Extract as an essentially orthogonal aspect to the rest of the AEZ design.

4 Features

See Figure 7 for a table summarizing computational costs and Figure 8 for a table summarizing
algorithmic features. Below we enumerate additional features and restate some key ones.

1) Strings of any byte length m can be encrypted into strings of m+abytes bytes for any (user-
selectable) value abytes. One achieves the maximal privacy and authenticity consistent with
abytes (assuming this value is not excessively large, whence its increase adds nothing). The
value abytes is authenticated and may change as often as a user likes.

2) Computational cost is close to that of AES-CTR mode: roughly 1 AES-equivalent per block.
And an implementation only needs to employ the forward direction of AES.

3) Nonces can have any length. Their lengths can vary during a session.

4) The AD can be an arbitrary list of arbitrary strings. This obviates the need for users to
encode multiple strings into a string-valued AD.

5) It is fine to omit nonces (select N = ε) if one is sure that (A,M) pairs will not repeat. If they
do repeat, damage is limited to divulging equality among (Ai,Mi), (Aj ,Mj) pairs.

6) Can be used as an arbitrary-output-length pseudorandom generator (PRG) or pseudorandom
function (PRF): define fK(X, �) as the result encrypting M = ε with A = X and abytes = �.
Here � is number of bytes requested.

7) Keys can have any length. A user may, for example, use a passphrase or DH ephemeral key.
(Note: some features one might want for mapping a passphrase to a 128-bit key, like salting
and an intentionally slow mapping to slow password guessing, are not natively provided.)

8) AEZ functions well as a stand-alone MAC and as a stand-alone enciphering scheme. The first

16

Hoang, Krovetz, and Rogaway AEZ v4.1

Objective Robust-AE, a goal that implies MRAE (nonce-reuse misuse resistance) [38].

Type Blockcipher-based scheme, based on AES4 and AES10.

Intended for sw/hw/lw. Intended to do well where AES does, in SW or HW, and on low-power
devices where ciphertext length should be minimized.

Key length Arbitrary. Keys of 48 bytes are most efficient. Fewer than 16 bytes is discouraged.

Nonce length Arbitrary. May vary during a session.

Auth length Arbitrary. Expansion beyond 16 bytes does not enhance security. Expansion by 0
bytes gives a strong, tweakable, VIL blockcipher.

Nonce reuse Yes. Secure against nonce-reuse in the strongest sense of the phrase [38].

Online No. MRAE and RAE schemes can’t be online (neither encryption nor decryption).

Unverified
plaintext

Yes. It is fine to release unverified plaintext (a recovered but inauthentic plaintext).
This is one aspect of our notion of a robust AE (when D is appropriately defined).

Parallelizable Yes. Two passes must be made to encrypt or decrypt, but both are parallelizable.
Processing of the AD is also parallelizable.

Incremental No. MRAE schemes can’t be incremental. Use as a deterministic MAC is incremental
with respect to block replacement or appending-on-the-right.

Inverse free Yes. The inverse direction of AES4 or AES10 is never used.

Context size 144 bytes for I, J,2I,2J,4I,4J,Δ1,Δ3 or 128 bytes for I, J,2I,2J,4I,4J,L,Δ3 (0.4
extra AES per AD) or 64 bytes for I, J,L,Δ3 (2 extra doublings per msg, 4 per AD)
or 48 bytes for I, J,L (can’t preprocess the AD). We currently use 128 in our code.

Static AD Yes. Static AD values can be preprocessed and used thereafter at near-zero cost.

Fast reject Yes. Invalid ciphertexts can be rejected far more quickly than valid ones decrypted.

Performance About the cost of OCB or AES-CTR, approaching 1.0 AES-equivalents per block

Proofs Either: Yes, there are proofs, but then a heuristic optimization is applied to a provably-
secure scheme to get a nice speedup; or No, there are no proofs for AEZ itself, although
the authors employ provable-security to motivate and justify some design choices.

Further
features

▸ Can exploit arbitrary redundancy in messages for authenticity ▸ Can be used as an
efficient, parallelizable MAC (encrypt the empty string). ▸ Can be used to encipher
short strings and to encrypt strings with low expansion. ▸ abytes is authenticated
may vary during a session. ▸ Extensions (not AEZ itself) will support secret nonces,
plaintext-length obfuscation, and radix64url output encoding. ▸ No patents.

Figure 8: Table of properties for AEZ. The choice of properties to list as rows evolved from slides
prepared by Bart Preneel during a Dagstuhl workshop [34].

use needs only 0.4 AES operations per block.

9) Verification of plaintext redundancy enhances authenticity, as we have already explained.

10) Short authenticators provide the security one would hope for. Our security notion doesn’t
“give up” when the adversary forges. This is part of the robust-AE notion.

11) Release of unverified plaintext is fine. This is another part of the robust-AE notion.

12) The security properties achieved by AEZ enable support for secret message numbers as a
simple add-on. This will be accomplished as an AEZ extension. Further AEZ extensions
will handle plaintext-length obfuscation, password salting, password guess-throttling, and
encoding ciphertexts into a target alphabet.

17

Hoang, Krovetz, and Rogaway AEZ v4.1

13) An encryption implementation can make one left-to-right pass over the plaintext, writing an
intermediate string as long as the plaintext; and then a second left-to-right, constant-memory
pass over the intermediate string, this time outputting the ciphertext online. Decryption can
be similarly realized. If one does not want to write out an intermediate string, which must
not be released to the adversary, the cost increases from 1 AES-equivalent per block to 1.4
AES-equivalents per block.

14) Some AE schemes need that the AD be available before the message is processed. AEZ only
requires AD processing be completed by the end of pass-1.

15) It is possible to accelerate the rejection of invalid ciphertexts by having decryption compute
the final ciphertext block prior to computing the remainder of the plaintext. The cost for
early-rejection is about 0.4 AES-equivalents per block.

16) AEZ is fully parallelizable in the processing of plaintext, ciphertext, and AD.

17) Static AD can be preprocessed so that one doesn’t have to subsequently pay a per-message ∣A∣-
dependent cost. Of course realizing this benefit requires an API that decouples provisioning
of the AD and provisioning of other inputs.)

18) Word alignment of the message and AD are not disrupted (for example, one never prepends
a byte to the message or AD, and then processes it.

19) The context size has been kept quite small: retaining “everything” one might want gives a
context size is 144 bytes, and an implementation can make due with as little as 48 bytes
without incurring an excessive computational price.

20) No AEZ-related patents have been or will be requested.

Performance is close to that of AES-CTR on modern processors. On an Intel Skylake CPU, where
AES-CTR peaks at 0.625 cpb, our current implementation of AEZ, written in C with SSE intrinsics,
encrypts or decrypts 16 KB strings at 0.64 cpb and 1500 byte strings at 0.72 cpb. On decryption,
invalid messages are more quickly rejected; for example, an invalid 1500 byte string is rejected at a
cost of 0.31 cpb. Associated data processing speed, which also determines MAC speed, is 0.29 cpb
for 1500 bytes. On Apple’s A9 ARMv8 implementation, where AES-CTR peaks at around 1.2 cpb,
our implementation encrypts or decrypts 16 KB strings at 1.3 cpb and 1500 byte strings at 1.5 cpb.
It takes about 0.6 cpb to either reject an invalid 1500 byte messages or process 1500 bytes of
associated data. All of these figures assume 12-byte nonces and 16-byte tags.

Advantages over GCM. AEZ has much stronger security properties than GCM. The later is
not nonce-reuse secure, cannot safely generate short tags [13], and is not secure with respect to
disclosure of unverified plaintext. GCM does not achieve the RAE security definition. AEZ avoids
GF(2128) multiplies (apart from the finite-field “doubling” that it uses).

A closer match to AEZ in terms of high-level aims is SIV, which is at least nonce-reuse secure [38].
But SIV has to output 128-bits more than its input; it is not RAE secure; and it is not parallelizable
(although the last issue could easily be fixed).

18

Hoang, Krovetz, and Rogaway AEZ v4.1

5 Design Rationale

Enciphering-based AE. An old result had already shown that enciphering with a strong PRP
provides a versatile route to AE [4]. We recently came to understand just how attractive this route
might be. On the one hand, we kept hearing requests for stronger AE security properties, like
nonce-reuse misuse-resistance, authenticity without minimal ciphertext expansions, and security if
unverified plaintexts are disclosed. Enciphering-based AE could deliver such aims. On the other
hand, enciphering schemes that worked on either long or short strings were steadily becoming better-
known objects. While they didn’t have the efficiency of OCB, say, neither were they computationally
exorbitant. And there was the hope of doing better.

Developing the enciphering scheme. With AES support increasingly embedded into devices,
we wanted to base our enciphering scheme on the AES round function. A wide body of work had
made abundantly clear that the best techniques for AES-based enciphering were going to depend on
the length of the plaintext. When the plaintext was short, we would want a simple, aesenc-based
design. For long strings we would want a more conventional mode. To cover all strings we’d have
to glue the two together.

For enciphering short strings, some version of FFX [5] was the obvious choice. It was already in
a draft standard [12], and the long history of Feistel networks made the choice seem safe (even if
security bounds for balanced Feistel networks become disappointing when the input gets too short).

For enciphering longer strings, there were a great many off-the-shelf alternatives we could turn to
(see [37] for a list). The best-known was EME2 [15, 19]. But its treatment of final fragments and
long messages seemed complex, and it needed two AES calls per block and lots of doubling. Most
alternatives traded a blockcipher calls for a potentially expensive finite-field operation, a direction
we didn’t want to go. We decided that no off-the-shelf solution would do.

AEZ-core builds on EME [15, 16] and OTR [26], but uses tweakable blockciphers [24] to arrive at
an analyzable design. It makes strong use of what we have called prove-then-prune approach. The
scaled-down design, with a per-block cost of just 1.0 times that of AES and no use of inverse-AES,
was cheaper than we initially imagined to be possible. While it has long been understood that
stream ciphers could be faster than blockciphers, it was not anticipated, at least by us, that a
wide-blocksize blockcipher could be about as cheap as a conventional blockcipher.

No hidden weaknesses. The designers have not hidden any weaknesses in this cipher. The
authors do not know any technical means by which one could intentionally weaken the design of
a scheme like AEZ. The authors excoriate intelligence-agency efforts to subvert security standards
and mass-market implementations.

6 Intellectual Property

The submitters have not applied for any patents in connection with this submission and have no
intention to do so. As far as the inventors know, AEZ may be used in an application or context
without IP-related restrictions. If any of this information changes, the submitters will promptly
(and within at most one month) announce these changes on the crypto-competitions mailing list.

19

Hoang, Krovetz, and Rogaway AEZ v4.1

7 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee regarding the
selection or non-selection of this submission as a second-round candidate, a third-round candidate,
a finalist, a member of the final portfolio, or any other designation provided by the committee. The
submitters understand that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published analyses that led
to the selection of the algorithm. The submitters understand that the selection of some algorithms
is not a negative comment regarding other algorithms, and that an excellent algorithm might fail to
be selected simply because not enough analysis was available at the time of the committee decision.
The submitters acknowledge that the committee decisions reflect the collective expert judgments
of the committee members and are not subject to appeal. The submitters understand that if they
disagree with published analyses then they are expected to promptly and publicly respond to those
analyses, not to wait for subsequent committee decisions. The submitters understand that this
statement is required as a condition of consideration of this submission by the CAESAR selection
committee.

8 Changes

Below we record each public version of AEZ since its inception.

AEZ v1 (2014.03.15): Initial definition. Submitted to the CAESAR competition.

AEZ v1.1 (2014.04.29): A minor revision to correct various v1 typos.

AEZ v2 (2014.08.17): A major revision, the enciphering algorithm MEM was replaced by
EME4. While no problems were ever found with MEM, the move facilitates two major gains:
(a) the cost is reduced from from 1.8 times that of AES to 1.0 times that of AES, while (b) all
use of the AES-inverse operation is removed from AEZ. Also, EME4 is simpler, and the entire
spec was correspondingly simplified.

AEZ v3 (2014.09.22): To simplify implementations the (Mx,My) pair of blocks is now taken
from the end of the string being enciphered/deciphered instead of the beginning. Round
keys were simplified. To minimize latency and facilitate fast rejection of invalid ciphertexts,
both X and Δ are added to Mx. Support is added for vector valued-AD, which entailed en-
riching AEZ-hash and removing Format(), extns, and the upper limit on abytes. Functions
(FF0, EME4, AHash, AMac) were renamed to (AEZ-tiny, AEZ-core, AEZ-hash, AEZ-prf).

AEZ v4 (2015.08.29): A minor revisions, the Extract() procedure was rewritten to be
conceptually simpler and ensure that knowledge of some subkeys (I, J , or L) won’t imply
knowledge of others. The default key length was changed to 48 bytes. The XEX construction,
instead of XE, is now used in AEZ-hash. The above changes frustrate a birthday attack
described by Leurent [23] (but, as before, we make no claims for beyond-birthday-bound
security). Offset conventions in E were modified for aesthetic reasons.

AEZ v4.1 (2015.10.14): Housecleaning: fixed two typos in the pseudocode (lines 403, 408)
and some minor textual edits. Update of performance claims to reflect newer CPUs.

20

Hoang, Krovetz, and Rogaway AEZ v4.1

Acknowledgments

For comments, ideas, feedback, and corrections, our thanks to Mihir Bellare, Dan Bernstein,
Dustin Boswell, Orr Dunkelman, Kris Gaj, Danilo Gligoroski, David Gregory,
Ekawat Homsirikamol (“Ice”), Philipp Jovanovic, Gaëtan Leurent, Stefan Lucks, Nick
Mathewson, Liden Mu, Chris Patton, Tom Ristenpart, Terence Spies, René Struik, and
Yusi Zhang (“James”).

Elaborating, Boswell, Lucks, Spies, and Struik all played roles in motivating the formalization
of RAE and creation of AEZ. Lucks spoke with Rogaway at Jan 2012 Dagstuhl event where he
advocated developing a solution to the problem of leaking unverified plaintexts. In an Apr 2013
email to Bellare, Boswell wrote of wanting an easier-to-use encryption scheme. Bellare passed
the note on. Struik gave an Aug 2013 DIAC presentation that emphasized the importance of
minimizing length expansion in low-energy environments [42]. Meanwhile, work with Spies on FPE
helped motivate linking up enciphering and AE in the first place.

Patton and Mu both did AEZ implementations, which helped validate our own. Gaj and Hom-
sirikamol kindly shared their thoughts on hardware-implementation aspects of AEZ. Unfortunately,
most of their concerns were fundamental to the AEZ design, or to RAE/MRAE in general, so we
weren’t able to do much. Leurent made the most interesting cryptanalytic observations on AEZ to
date, explaining that our v3 design completely failed once one manages to find a birthday-bound
style collision [23]. This motivated our changes for v4, although we continue to make no claims for
beyond-birthday-bound security. Mathewson pointed out a couple of typos in the v4 spec and did
an AEZ implementation in Python.

Hoang was supported by NSF grant CNS-1423566; Krovetz was supported by NSF grant CNS-
1314592; and Rogaway was supported by NSF grants CNS-1228828 and CNS-1314885. Many
thanks to the NSF for their continuing support. Part of this work was done when Hoang was
working at UC San Diego, University of Maryland, and Georgetown University, under the support
of NSF grants CNS-0904380, CCF-0915675, CNS-1116800 and CNS-1228890.

No animals were harmed in conducting this research.

References

[1] E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, and K. Yasuda. How to securely
release unverified plaintext in authenticated encryption. Cryptology ePrint Archive, Report
2014/144. Feb 25, 2014.

[2] C. Arnould. Towards developing ASIC and FPGA architectures of high-throughput CAESAR
candidates. ETH Zürich Master’s Project. March 2015.

[3] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. BLAKE2: simpler, smaller,
fast as MD5. ACNS 2013, LNCS vol. 7954, pp. 119–135, 2013.

[4] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or
redundancy in plaintexts for efficient cryptography. ASIACRYPT 2000, LNCS 1976, Springer,
pp. 317–330, 2000.

21

Hoang, Krovetz, and Rogaway AEZ v4.1

[5] M. Bellare, P. Rogaway, and T. Spies. The FFX mode of operation for format-preserving
encryption. Draft 1.1. Submission to NIST, available from their website. Feb 20, 2010.

[6] A. Biryukov, D. Dinu, and D. Khovratovich. Argon2. Password Hashing Competition (PHC)
submission. July 8, 2015. https://password-hashing.net/submissions/specs/Argon-v3.pdf

[7] J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message authen-
tication. EUROCRYPT 2002, LNCS 2332, Springer, pp. 384–397, 2002.

[8] L. Carter and M. Wegman. Universal classes of hash functions. Journal of computer and
system sciences, 18(2), pp. 143–154, 1979.

[9] J. Daemen and V. Rijmen. The Pelican MAC function. Cryptology ePrint Archive: Report
2005/088. 2005.

[10] J. Daemen and V. Rijmen. A new MAC construction ALRED and a specific instance ALPHA-
MAC. Fast Software Encryption. LNCS 3557, pp. 1–17, 2005.

[11] O. Dunkelman and N. Keller. The effects of the omission of last round’s MixColumns on AES.
Information Processing Letters, 110, pp. 304–308, 2010.

[12] M. Dworkin. Recommendation for block cipher modes of operation: methods for format-
preserving encryption. NIST Special Publication 800-38G: Draft. Jul 2013.

[13] N. Ferguson. Authentication weaknesses in GCM. Manuscript. May 2005.

[14] E. Fleischmann, C. Forler, S. Lucks, and J. Wenzel. McOE: A foolproof on-line authenticated
encryption scheme. IACR Cryptology ePrint Archive 2011, 644 (2011)

[15] S. Halevi. EME∗: Extending EME to handle arbitrary-length messages with associated data.
INDOCRYPT 2004. pp. 315–327, 2004.

[16] S. Halevi and P. Rogaway. A parallelizable enciphering mode. CT-RSA 2004, LNCS 2964,
Springer, pp. 292–304, 2004.

[17] V. T. Hoang, T. Krovetz, and P. Rogaway. Robust authenticated-encryption: AEZ and the
problem that it solves. EUROCRYPT 2015, part I, LNCS 9056, Springer, pp. 15–44, 2015.

[18] V. T. Hoang, R. Reyhanitabar, P. Rogaway, and D. Vizár. Online authenticated-encryption
and its nonce-reuse misuse-resistance. CRYPTO 2015, part I, LNCS. 9215, Springer, 493–517,
2015.

[19] IEEE P1619.2. Draft standard architecture for wide-block encryption for shared storage media.
2008. Available from https://siswg.net.

[20] L. Keliher and J. Sui. Exact maximum expected differential and linear probability for two-
round Advanced Encryption Standard. IET Information Security, 1(2), pp. 53–57, 2007.

[21] T. Krovetz and P. Rogaway. The software performance of authenticated-encryption modes.
FSE 2011, LNCS 6733, Springer, pp. 306–327, 2011.

[22] R. Lampe and J. Patarin. Composition theorems for CCA cryptographic security. Cryptology
ePrint report 2012/131. May 2012.

[23] G. Leurent. AEZ BBB. Rump session talk at Eurocrypt 2015. Also personal communications,
April 2015.

[24] M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. CRYPTO 2002, LNCS 2442,
Springer, pp. 31–46, 2002

[25] D. McGrew. An interface and algorithms for authenticated encryption. RFC 5116. Jan 2008

22

Hoang, Krovetz, and Rogaway AEZ v4.1

[26] K. Minematsu. Parallelizable rate-1 authenticated encryption from pseudorandom functions.
EUROCRYPT 2014, LNCS 8441, Springer, pp. 275–292, 2014.

[27] K. Minematsu and Y. Tsunoo. Provably secure MACs from differentially-uniform permuta-
tions and AES-based implementations. FSE 2006, LNCS 4047, Springer, pp. 226–241, 2006.

[28] M. Naor and O. Reingold. On the construction of pseudo-random permutations: Luby-Rackoff
revisited. Journal of Cryptology, 12(1), pp. 29-66, 1999.

[29] M. Naor and O. Reingold. The NR mode of operation. Undated manuscript realizing the
mechanism of [28].

[30] J. Patarin. Generic attacks on Feistel schemes. ASIACRYPT 2001, LNCS 2248, Springer,
pp. 222–238, 2001. Also see Cryptology ePrint report 2008/036.

[31] J. Patarin. Security of balanced and unbalanced Feistel schemes with linear non equalities.
Cryptology ePrint report 2010/293. May 2010.

[32] J. Patarin. Security of random Feistel schemes with 5 or more rounds. CRYPTO 2004,
LNCS 3152, Springer, pp. 106–122, 2004.

[33] J. Patarin, B. Gittins, and J. Treger. Increasing block sizes using Feistel networks: the example
of the AES. Cryptography and Security: From Theory to Applications, LNCS 6805, Springer,
pp. 67–82, 2012.

[34] B. Preneel. Personal communications, via D. Bernstein. CAESAR competition: partial status
of submissions (draft output of Dagstuhl discussion session 9 Jan 2014). Set of slides.

[35] P. Rogaway. Authenticated-encryption with associated-data. ACM Conference on Computer
and Communications Security, ACM Press, pp. 98–107, 2002.

[36] P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB
and PMAC. ASIACRYPT 2004, LNCS 3329, Springer, pp. 16–31, 2004.

[37] P. Rogaway. A synopsis of format-preserving encryption. Unpublished manuscript, available
from the author’s webpage. Mar 2010.

[38] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem.
EUROCRYPT 2006, LNCS 4004, Springer, pp. 373–390, 2006. Also Cryptology ePrint Report
2006/221, retitled, Deterministic authenticated-encryption: a provable-security treatment of
the key-wrap problem. 2006.

[39] M. Simpĺıcio, P. Barbuda, P. Barreto, T. Carvalho, and C. Margi. The MARVIN message
authentication code and the LETTERSOUP authenticated encryption scheme. Security and
Communication Networks, 2(2), pp. 165–180, 2009.

[40] M-J. Saarinen and J-P. Aumasson. The BLAKE2 cryptographic hash and MAC. Internet Draft
draft-saarinen-blake2-06. IETF. August 25, 2015. https://tools.ietf.org/html/draft-saarinen-
blake2-06

[41] M. Simpĺıcio and P. Barreto. Revisiting the security of the ALRED Design and Two of Its
Variants: Marvin and LetterSoup. IEEE Transactions on Information Theory, 58(9), pp. 6223–
6238, 2012.

[42] R. Struik. AEAD ciphers for highly constrained networks. DIAC 2013 presentation. Chicago,
Illinois, USA. Aug 13, 2013.

23

Hoang, Krovetz, and Rogaway AEZ v4.1

500 algorithm BLAKE2b(M) // BLAKE2b hashing

501 IV ← IV0 ∥ ⋯ ∥ IV7; H0 ← IV ⊕ ([48] ∥ [0] ∥ [1] ∥ [1] ∥ [0]60)
502 M0 . . .Mm−1 ←M where m← ⌈∥M∥/128⌉ and ∥M0∥ = ⋯ = ∥Mm−2∥ = 128
503 for i = 0 to m − 1 do �i ← ∥M0⋯Mi∥; Hi+1 ← Compress(Hi,pad(Mi), �i) od
504 return Hm[1 . . . 384]

Figure 9: The code of BLAKE2b. See Table 2 for the constants IV0, . . . , IV7, and see the text for the
description for the compression function Compress of BLAKE2b.

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3

σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4

σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8

σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13

σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9

σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11

σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10

σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5

σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

Table 1: Permutations of {0,1,2, . . . ,15} used by BLAKE2b.

IV0 = 0x6a09e667f3bcc908 IV1 = 0xbb67ae8584caa73b
IV2 = 0x3c6ef372fe94f82b IV3 = 0xa54ff53a5f1d36f1
IV4 = 0x510e527fade682d1 IV5 = 0x9b05688c2b3e6c1f
IV6 = 0x1f83d9abfb41bd6b IV7 = 0x5be0cd19137e2179

Table 2: The 8-byte constants IV0, . . . , IV7 used by BLAKE2b, written in hexadecimal.

A Specification of BLAKE2b

For completeness, we give the full description of BLAKE2b, closely following the BLAKE2b docu-
mentation [3, 40]. For each byte string X, let ∥X∥ denote the byte length of X. For each string X
with ∥X∥ ≤ 128, let pad(X) denote the string Y with ∥Y ∥ = 128 obtained by appending zero or more
0-bits to X. Let X ⋙ � denote the right circular shift by � bits on the string X. For any 64-bit
strings X and Y , let X + Y denote the string obtained by regarding X and Y as integers, adding
them modulo 264, then regarding the resulting integers as a string. BLAKE2b uses little-endian
convention in parsing between integers and strings.

The specification of the BLAKE2b hash is given in Figure 9, where the compression function
Compress is as follows. It takes as input a 64-byte string h, a 128-byte messageM , and an integer 0 ≤
t < 2128. Let f0 = 064 if t is a multiple of 128, and let f0 = 164 otherwise. Let f1 = 064. Parse t as t0t1,
where ∣t0∣ = ∣t1∣ = 64. Recall that BLAKE2b uses little-endian convention, so t0 contains the least sig-
nificant bits of t. Parse h as h0⋯h7, andM asM0⋯M15, where ∣h0∣ = ⋯ = ∣h7∣ = ∣M0∣ = ⋯ = ∣M15∣ = 64.
Initialize (v0, . . . , v15) ← (h0, . . . , h7, IV0, IV1, IV2, IV3, t0 ⊕ IV4, t1 ⊕ IV5, f0 ⊕ IV6, f1 ⊕ IV7), where
the constants IV0, . . . , IV7 are defined in Table 2. One then processes the state (v0, . . . , v15) in 12

24

Hoang, Krovetz, and Rogaway AEZ v4.1

600 algorithm Decipher(K,T,C) // AEZ deciphering

601 if ∣C ∣ < 256 then return Decipher-AEZ-tiny(K,T,C)
602 if ∣C ∣ ≥ 256 then return Decipher-AEZ-core(K,T,C)

610 algorithm Decipher-AEZ-tiny(K,T,C) // AEZ-tiny deciphering

611 m← ∣C ∣; n←m/2; Δ← AEZ-hash(K,T)
612 if m < 128 then C ← C ⊕ (E0,3

K (Δ ⊕ (C0∗ ∨ 10∗)) ∧ 10∗) fi
613 if m = 8 then k ← 24 else if m = 16 then k ← 16 else if m < 128 then k ← 10 else k ← 8 fi
614 L← C[1 .. n]; R ← C[n + 1 .. m]; if m ≥ 128 then i← 6 else i← 7 fi

615 for j ← k − 1 downto 0 do R′ ← L⊕ ((E0,i
K (Δ ⊕ R10∗ ⊕ [j]128))[1 .. n]); L← R; R ← R′ od

616 M ← R ∥ L; return M

620 algorithm Decipher-AEZ-core(K,T,C) // AEZ-core deciphering

621 Δ← AEZ-hash(K,T)
622 C1C

′
1⋯CmC ′m Cuv CxCy ← C where ∣C1∣ = ⋯ = ∣C ′m∣ = ∣Cx∣ = ∣Cy∣ = 128 and ∣Cuv∣ < 256

623 d← ∣Cuv∣; if d ≤ 127 then Cu ← Cuv; Cv ← ε else Cu ← Cuv[1..128]; Cv ← Cuv[129..∣Cuv∣] fi
624 for i← 1 to m do Wi ← Ci ⊕E1,i

K (C ′i); Yi ← C ′i ⊕E0,0
K (Wi) od

625 if d = 0 then Y ← Y1 ⊕⋯⊕ Ym ⊕ 0 else if d ≤ 127 then Y ← Y1 ⊕⋯⊕ Ym ⊕E0,4
K (Cu10

∗)
626 else Y ← Y1 ⊕⋯⊕ Ym ⊕E0,4

K (Cu) ⊕E0,5
K (Cv10

∗) fi
627 Sx ← Cx ⊕Δ⊕ Y ⊕E0,2

K (Cy); Sy ← Cy ⊕E−1,2K (Sx); S ← Sx ⊕ Sy

628 for i←1 to m do S′←E2,i
K (S); Xi←Wi ⊕ S′; Zi←Yi ⊕ S′; M ′

i←Xi ⊕E0,0
K (Zi); Mi←Zi ⊕E1,i

K (M ′
i) od

629 if d = 0 then Mu ←Mv ← ε; X ←X1 ⊕⋯⊕Xm ⊕ 0

630 else if d ≤ 127 then Mu ← Cu ⊕E−1,4K (S); Mv ← ε; X ←X1 ⊕⋯⊕Xm ⊕E0,4
K (Mu10

∗)
631 else Mu←Cu ⊕E−1,4K (S); Mv←Cv ⊕E−1,5K (S); X←X1 ⊕⋯⊕Xm ⊕E0,4

K (Mu) ⊕E0,5
K (Mv10

∗) fi
632 My ← Sx ⊕E−1,1K (Sy); Mx ← Sy ⊕Δ⊕X ⊕E0,1

K (My)
633 return M1M

′
1⋯MmM ′

m MuMv MxMy

Figure 10: AEZ deciphering routines.

rounds. In each round, we run the following sequence of operations:

G0(v0, v4, v8, v12); G1(v1, v5, v9, v13); G2(v2, v6, v10, v14); G3(v3, v7, v11, v15);
G4(v0, v5, v10, v15); G5(v1, v6, v11, v12); G6(v2, v7, v8, v13); G7(v3, v4, v9, v14)

In round r, the operation Gi(a, b, c, d), with i ∈ {0,1, . . . ,7}, modifies the 64-bit variables a, b, c, d
as follows:

j ← σr mod 10(2i); a← a + b +Mj ; d← (d⊕ a)⋙ 32; c← c + d; b← (b⊕ c)⋙ 24;
j ← σr mod 10(2i + 1); a← a + b +Mj ; d← (d⊕ a)⋙ 16; c← c + d; b← (b⊕ c)⋙ 63

where the permutations σ0, . . . , σ9 on {0,1, . . . ,15} are specified in Table 1. At the end of the 12th
round, output (h0 ⊕ v0 ⊕ v8) ∥ (h1 ⊕ v1 ⊕ v9) ∥ ⋯ ∥ (h7 ⊕ v7 ⊕ v15).

B Specification of AEZ deciphering algorithms

For completeness, in Figure 10 we give the code for the deciphering routines of AEZ.

25

