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1 Specification

CLOC (which stands for Compact Low-Overhead CFB, and is pronounced as “clock”) is a blockcipher
mode of operation for authenticated encryption with associated data (AEAD), which is also called an
authenticated cipher. The design of CLOC aims at being provably secure and optimizing the implemen-
tation overhead beyond the blockcipher, the precomputation complexity, and the memory requirement.
CLOC handles short input data efficiently, and is suitable for use with embedded processors.

CLOC was presented in [15], and the main difference of our CAESAR submission from [15] is that
the minimum data unit is defined to be a byte (8 bits) string, and we instantiate CLOC based on AES
blockcipher for 16-byte block length and TWINE blockcipher [30] for 8-byte block length.

1.1 Notation

Let {0, 1}∗ be the set of all finite bit strings, including the empty string ε. For an integer ℓ ≥ 0, let {0, 1}ℓ
be the set of all bit strings of ℓ bits. We let B = {0, 1}8 be the set of bytes (8-bit strings), and B∗ be the set
of all finite byte strings. For X,Y ∈ {0, 1}∗, we write X ∥Y , (X,Y ), or XY to denote their concatenation.
For ℓ ≥ 0, we write 0ℓ ∈ {0, 1}ℓ to denote the bit string that consists of ℓ zeros, and 1ℓ ∈ {0, 1}ℓ to denote
the bit string that consists of ℓ ones. ForX ∈ {0, 1}∗, |X| is its length in bits, and for ℓ ≥ 1, |X|ℓ = ⌈|X|/ℓ⌉
is the length in ℓ-bit blocks. For X ∈ {0, 1}∗ and ℓ ≥ 0 such that |X| ≥ ℓ, msbℓ(X) is the most significant
(the leftmost) ℓ bits of X. For instance we have msb1(1100) = 1 and msb3(1100) = 110. For X ∈ {0, 1}∗

and ℓ ≥ 1, we write its partition into ℓ-bit blocks as (X[1], . . . , X[x])
ℓ← X, which is defined as follows.

If X = ε, then x = 1 and X[1]
ℓ← X, where X[1] = ε. Otherwise X[1], . . . , X[x] ∈ {0, 1}∗ are unique bit

strings such that X[1] ∥ · · · ∥X[x] = X, |X[1]| = · · · = |X[x− 1]| = ℓ, and 1 ≤ |X[x]| ≤ ℓ.
In what follows, we fix a block length n and a blockcipher E : KE × {0, 1}n → {0, 1}n, where KE is a

non-empty set of keys. Let Perm(n) be the set of all permutations over {0, 1}n. We write EK ∈ Perm(n)
for the permutation specified by K ∈ KE , and C = EK(M) for the ciphertext of plaintext M ∈ {0, 1}n
under key K ∈ KE . Following the CAESAR call for submissions, we restrict all input and output variables
of CLOC as byte-strings. Also we assume the big-endian format for all variables.

1.2 Algorithm and Parameters

CLOC takes three parameters, a blockcipher E : KE × {0, 1}n → {0, 1}n, a nonce length ℓN , and a tag
length τ , where ℓN and τ are in bits. Here, a nonce corresponds to a public message number specified by
the CAESAR call for submissions, and we may interchangeably use both names. CLOC does not have
the secret message number, i.e. it is always assumed to be of length zero. We require 1 ≤ ℓN ≤ n− 9 and
1 ≤ τ ≤ n, and assume that ℓN/8 and τ/8 are integers⋆, and n ∈ {64, 128}. We write CLOC[E, ℓN , τ ] for
CLOC that is parameterized by E, ℓN , and τ , and we often omit the parameters if they are irrelevant
or they are clear from the context. CLOC[E, ℓN , τ ] = (CLOC-E ,CLOC-D) consists of the encryption
algorithm CLOC-E and the decryption algorithm CLOC-D.

CLOC-E and CLOC-D have the following syntax.{
CLOC-E : KCLOC ×NCLOC ×ACLOC ×MCLOC → CT CLOC

CLOC-D : KCLOC ×NCLOC ×ACLOC × CT CLOC →MCLOC ∪ {⊥}

KCLOC = KE is the key space, which is identical to the key space of the underlying blockcipher, NCLOC =
BℓN/8 is the nonce space, ACLOC = B∗ is the associated data space,MCLOC = B∗ is the plaintext space,
CT CLOC = CCLOC × TCLOC is the ciphertext space, where CCLOC = B∗ and TCLOC = Bτ/8 is the tag
space, and ⊥ ̸∈ MCLOC is the distinguished reject symbol. We write (C, T ) ← CLOC-EK(N,A,M) and
M ← CLOC-DK(N,A,C, T ) or ⊥ ← CLOC-DK(N,A,C, T ).

CLOC-E and CLOC-D are defined in Fig. 1. In these algorithms, we use four subroutines, HASH,
PRF, ENC, and DEC. They have the following syntax.

HASH : KCLOC ×NCLOC ×ACLOC → {0, 1}n

PRF : KCLOC × {0, 1}n × CCLOC → TCLOC

ENC : KCLOC × {0, 1}n ×MCLOC → CCLOC

DEC : KCLOC × {0, 1}n × CCLOC →MCLOC

⋆ In CLOC v1, the requirement was 1 ≤ ℓN ≤ n− 1, and this was updated to handle param in CLOC v2.
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Algorithm CLOC-EK(N,A,M)

1. V ← HASHK(N,A)
2. C ← ENCK(V,M)
3. T ← PRFK(V,C)
4. return (C, T )

Algorithm CLOC-DK(N,A,C, T )

1. V ← HASHK(N,A)
2. T ∗ ← PRFK(V,C)
3. if T ̸= T ∗ then return ⊥
4. M ← DECK(V,C)
5. return M

Fig. 1. Pseudocode of the encryption and the decryption algorithms of CLOC

Algorithm HASHK(N,A)

1. (A[1], . . . , A[a])
n← A

2. SH[1]← EK(fix0(ozp(A[1])))
3. if msb1(ozp(A[1])) = 1 then
4. SH[1]← h(SH[1])
5. if a ≥ 2 then
6. for i← 2 to a− 1 do
7. SH[i]← EK(SH[i− 1]⊕A[i])
8. SH[a]← EK(SH[a− 1]⊕ ozp(A[a]))
9. if |A[a]| = n then

10. V ← f1(SH[a]⊕ ozp(param ∥N))
11. else // 0 ≤ |A[a]| ≤ n− 1
12. V ← f2(SH[a]⊕ ozp(param ∥N))
13. return V

Algorithm PRFK(V,C)

1. if |C| = 0 then
2. T ← msbτ (EK(g1(V )))
3. return T
4. (C[1], . . . , C[m])

n← C
5. SP[0]← EK(g2(V ))
6. for i← 1 to m− 1 do
7. SP[i]← EK(SP[i− 1]⊕ C[i])
8. if |C[m]| = n then
9. SP[m]← EK(f1(SP[m− 1]⊕ C[m]))

10. else // 1 ≤ |C[m]| ≤ n− 1
11. SP[m]← EK(f2(SP[m− 1]⊕ ozp(C[m])))
12. T ← msbτ (SP[m])
13. return T

Algorithm ENCK(V,M)

1. if |M | = 0 then
2. C ← ε
3. return C
4. (M [1], . . . ,M [m])

n←M
5. SE[1]← EK(V )
6. for i← 1 to m− 1 do
7. C[i]← SE[i]⊕M [i]
8. SE[i+ 1]← EK(fix1(C[i]))
9. C[m]← msb|M [m]|(SE[m])⊕M [m]

10. C ← (C[1], . . . , C[m])
11. return C

Algorithm DECK(V,C)

1. if |C| = 0 then
2. M ← ε
3. return M
4. (C[1], . . . , C[m])

n← C
5. SD[1]← EK(V )
6. for i← 1 to m− 1 do
7. M [i]← SD[i]⊕ C[i]
8. SD[i+ 1]← EK(fix1(C[i]))
9. M [m]← msb|C[m]|(SD[m])⊕ C[m]

10. M ← (M [1], . . . ,M [m])
11. return M

Fig. 2. Subroutines used in the encryption and decryption algorithms of CLOC

These subroutines are defined in Fig. 2, and illustrated in Fig. 3, Fig. 4, and Fig. 5. We also present
equivalent figures in Fig. 6, Fig. 7, and Fig. 8. In the figures, i is the identity function, and i(X) = X
for all X ∈ {0, 1}n. In HASH, the nonce N is padded with param ∈ B which is an 8-bit constant
that depends on the parameters, E, ℓN , and τ . See Sect. 1.3 and Sect. 1.4 for the concrete values of
param. In the subroutines, we use the one-zero padding function ozp : B∗ → B∗, the bit-fixing functions
fix0, fix1 : B∗ → B∗, and five tweak functions f1, f2, g1, g2, and h, which are functions over {0, 1}n.

The one-zero padding function ozp is used to adjust the length of an input string so that the total
length becomes a positive multiple of n bits. For X ∈ B∗, ozp(X) is defined as ozp(X) = X if |X| = ℓn
for some ℓ ≥ 1, and ozp(X) = X ∥ 10n−1−(|X| mod n) otherwise. We note that ozp(ε) = 10n−1, and we also
note that, in general, the function is not invertible.

The bit-fixing functions fix0 and fix1 are used to fix the most significant bit of an input string to zero
and one, respectively. For X ∈ B∗, fix0(X) is defined as fix0(X) = X ∧ 01|X|−1, and fix1(X) is defined as
fix1(X) = X ∨ 10|X|−1, where ∧ and ∨ are the bit-wise AND operation, and the bit-wise OR operation,
respectively.

The tweak function h is used in HASH if the most significant bit of ozp(A[1]) is one. We use f1 and f2
in HASH and PRF, where f1 is used if the last input block is full (i.e., if |A[a]| = n or |C[m]| = n) and f2 is
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Table 1. Definition of param. ℓN and τ are written in bytes, and param is in hex. The asterisk indicates the
recommended parameter.

E ℓN τ param

* AES-128 12 8 0xc0

AES-128 12 12 0xc1

AES-128 12 16 0xc2

AES-128 12 4 0xc3

* AES-128 8 8 0xd0

AES-128 8 12 0xd1

AES-128 8 16 0xd2

AES-128 8 4 0xd3

AES-128 14 8 0xe0

AES-128 14 12 0xe1

AES-128 14 16 0xe2

AES-128 14 4 0xe3

E ℓN τ param

* TWINE-80 6 4 0xcc

TWINE-80 6 6 0xcd

TWINE-80 6 8 0xce

TWINE-80 4 4 0xdc

TWINE-80 4 6 0xdd

TWINE-80 4 8 0xde

used otherwise. We use g1 and g2 in PRF, where we use g1 if the second argument of the input is the empty

string (i.e., |C| = 0), and otherwise we use g2. Now for X ∈ {0, 1}n, let (X[1], X[2], X[3], X[4])
n/4← X.

Then f1, f2, g1, g2, and h are defined as follows.

f1(X) = (X[1, 3], X[2, 4], X[1, 2, 3], X[2, 3, 4])

f2(X) = (X[2], X[3], X[4], X[1, 2])

g1(X) = (X[3], X[4], X[1, 2], X[2, 3])

g2(X) = (X[2], X[3], X[4], X[1, 2])

h(X) = (X[1, 2], X[2, 3], X[3, 4], X[1, 2, 4])

Here X[a, b] stands for X[a]⊕X[b] and X[a, b, c] stands for X[a]⊕X[b]⊕X[c].

Alternatively the tweak functions can be specified by a matrix. Let

M =


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

 (1)

be a 4× 4 binary matrix, and let Mi for i ≥ 0 be exponentiations of M, where M0 denotes the identity
matrix. Then we have f1(X) = X ·M8, f2(X) = X ·M, g1(X) = X ·M2, g2(X) = X ·M, and h(X) = X ·M4,
where X = (X[1], X[2], X[3], X[4]) is interpreted as a vector.

1.3 Parameter Spaces

As the CAESAR submission we specify the parameter spaces of CLOC as follows.

– Blockcipher E: AES-128 (AES with 128-bit key), or TWINE-80 (TWINE with 80-bit key).

– Nonce length ℓN : For AES-128, ℓN ∈ {64 bits (8 byte), 96 bits (12 bytes), 112 bits (14 bytes)}, and
for TWINE-80, ℓN ∈ {32 bits (4 byte), 48 bits (6 bytes)}.

– Tag length τ : For AES-128, τ ∈ {32 bits (4 bytes), 64 bits (8 bytes), 96 bits (12 bytes), 128 bits (16
bytes)}, and for TWINE-80, τ ∈ {32 bits (4 bytes), 48 bits (6 bytes), 64 bits (8 bytes)}.

TWINE is a 64-bit blockcipher proposed by Suzaki, Minematsu, Morioka, and Kobayashi at SAC 2012 [30].
The specification of TWINE is described in Appendix A.

The choice of the parameter determines the value of param ∈ B which is concatenated to the nonce
N in HASH. The definition of param is given in Table 1.
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Table 2. Security goal for confidentiality (privacy)

Parameter set aes128n12t8clocv2 aes128n8t8clocv2 twine80n6t4clocv2

Data 64 64 32
Time 128 128 80

Table 3. Security goal for integrity (authenticity)

Parameter set aes128n12t8clocv2 aes128n8t8clocv2 twine80n6t4clocv2

Data 64 64 32
Verify 64 64 32
Time 128 128 80

1.4 Recommended Parameter Sets

We specify the recommended parameter sets as follows.

– Parameter set 1, aes128n12t8clocv2: E = AES-128, ℓN = 96 (12-byte nonce), τ = 64 (8-byte tag)

– Parameter set 2, aes128n8t8clocv2: E = AES-128, ℓN = 64 (8-byte nonce), τ = 64 (8-byte tag)

– Parameter set 3, twine80n6t4clocv2: E = TWINE-80, ℓN = 48 (6-byte nonce), τ = 32 (4-byte tag)

These are marked with the asterisk in Table 1.

2 Security Goals

The security goal of CLOC is to provide the provable security in terms of confidentiality (or privacy) of
plaintexts under nonce-respecting adversaries, and integrity (or authenticity) of plaintext, associated data,
and nonce (public message number) under nonce-reusing adversaries. That is, to keep both confidentiality
and integrity, the nonce of CLOC must be unique for all encryptions, and even if this condition is violated
for some reason, say by a software error, CLOC retains the authenticity of sent messages, except for replays
(which can be protected by some outer mechanism). Note that CLOC has no secret message number.
CLOC has provable security guarantees both for confidentiality and integrity, up to the standard birthday
bound of the block length of the underlying blockcipher, based on the assumption that the blockcipher
is a pseudorandom permutation (PRP). That is, for the block length of n bits, the security is guaranteed
provided that the attacker obtains σ ≪ 2n/2 blocks of data. A detailed explanation on the attack models
and the provable security bounds are given in Sect. 3.

Attack Workload. We provide security bounds of CLOC in Sect. 3 based on the pseudorandomness of the
underlying blockcipher. We obtain Table 2 and Table 3 from these bounds. The variables in the tables
denote the required workload of an adversary to break the cipher, in logarithm base 2. If one of the
variables reaches the suggested number, then there is no security guarantee anymore, and the cipher can
be broken. In Table 2, Data denotes σpriv of our privacy theorem (Theorem 1), and this roughly suggests
the number of data blocks that the adversary obtains. In Table 3, Data denotes σauth and Verify denotes
q′ of our authenticity theorem (Theorem 2), where σauth roughly suggests the number of data blocks that
the adversary obtains, and q′ denotes the number of decryption queries. In both tables, Time denotes the
time complexity, which we assume to be equal to the bit length of the key of the underlying blockcipher.
We note that small constant factors are neglected in these tables. For instance the privacy bound in
Theorem 1 is 5σ2

priv/2
n, and it becomes void if σpriv ≈ (2n/5)1/2, which is slightly less than 2n/2.

We have already mentioned that the nonce cannot be repeated to maintain the privacy. As an addi-
tional security goal, we claim that the privacy of CLOC holds as long as the uniqueness of (A,N), a pair
of associated data and a nonce, is maintained. That is, even if the nonce is reused, if the uniqueness is
maintained as the pair, then the privacy bound still holds. We note that the authenticity holds in this
setting as well, since it is maintained even if the nonce is reused.
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On the Use of 64-Bit Blockcipher. We emphasize that the use of 64-bit blockcipher, TWINE, is not for
general purpose applications. The birthday bound for the block length of 64 bits is usually unacceptable
for conventional data transmission. As demonstrated by McGrew [22], it leaks information when the total
data blocks reach about 32 Gbytes, if the key is not renewed. However, the parameter set with 64-bit
blockcipher does not focus on commodity channels, e.g., the Internet, but it focuses on networks where
the data rate is significantly low, with short packet data, and sparse data transmission from edge devices.
Many protocols for wireless sensor devices have a low-data rate to suppress the power consumption. For
example, IEEE 802.15.4 has 20/40/250 Kbps [4], which is used as physical and data-link layers of popular
sensor protocols, Zigbee and 6LoWPAN. Another example is Z-Wave, which has 9.6 or 40 Kbps [5]. If
edge devices are powered by a small battery, sending 32 Gbytes for one battery is unlikely to be possible
in the first place, and rekeying should occur with battery replacement. This naturally implies that the
total data blocks sent from one device for its life time is small, hence it may keep the acceptable security
even with a 64-bit blockcipher. For example, when the edge device sends data of 512 bytes for every
thirty minutes for 10 years (which is exceptionally long for battery-powered sensor devices), the total
data amount sent from the device for its life time is about 90 Mbytes. With a standard birthday bound
with the block length of 64 bits, the security bound is still below 2−17, which can be acceptable for such
constrained devices. Note that this setting assumes only one key, and if the device can renew the key,
say, for each year, the bound can be reduced to 2−23.

Of course if the target network has a high-data rate with stable power source, we recommend to use
the parameter sets with a 128-bit blockcipher.

3 Security Analysis

In this section, we define the security notions of a blockcipher and CLOC, and present our security
theorems. The following descriptions are taken from [15], and they hold for all recommended parameter
sets.

PRP Notion. We assume that the blockcipher E : KE×{0, 1}n → {0, 1}n is a pseudorandom permutation,

or a PRP [19]. We say that P is a random permutation if P
$← Perm(n), and define

Advprp
E (A) def

= Pr
[
AEK(·) ⇒ 1

]
− Pr

[
AP (·) ⇒ 1

]
,

where the first probability is taken over K
$← KE and the randomness of A, and the last is over P

$←
Perm(n) and A. We write CLOC[Perm(n), ℓN , τ ] for CLOC that uses P as EK , and the encryption and
decryption algorithms are written as CLOC-EP and CLOC-DP .

Privacy Notion. We define the privacy notion for CLOC[E, ℓN , τ ] = (CLOC-E ,CLOC-D). This no-
tion captures the indistinguishably of a nonce-respecting adversary in a chosen plaintext attack setting.
We consider an adversary A that has access to the CLOC encryption oracle, or a random-bits oracle.
The encryption oracle takes (N,A,M) ∈ NCLOC × ACLOC ×MCLOC as input and returns (C, T ) ←
CLOC-EK(N,A,M). The random-bits oracle, $-oracle, takes (N,A,M) ∈ NCLOC×ACLOC×MCLOC as

input and returns a random string (C, T )
$← {0, 1}|M |+τ . We define the privacy advantage as

Advpriv
CLOC[E,ℓN ,τ ](A)

def
= Pr

[
ACLOC-EK(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·) ⇒ 1

]
,

where the first probability is taken over K
$← KCLOC and the randomness of A, and the last is over the

random-bits oracle and A. We assume that A in the privacy game is nonce-respecting, that is, A does
not make two queries with the same nonce.

Privacy Theorem. Let A be an adversary that makes q queries, and suppose that the queries are
(N1, A1,M1), . . . , (Nq, Aq,Mq). Then we define the total associated data length as a1 + · · ·+ aq, and the
total plaintext length as m1 + · · · + mq, where (Ai[1], . . . , Ai[ai])

n← Ai and (Mi[1], . . . ,Mi[mi])
n← Mi.

We have the following information theoretic result.
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Theorem 1. Let Perm(n), ℓN , and τ be the parameters of CLOC. Let A be an adversary that makes at
most q queries, where the total associated data length is at most σA, and the total plaintext length is at
most σM . Then we have Advpriv

CLOC[Perm(n),ℓN ,τ ](A) ≤ 5σ2
priv/2

n, where σpriv = q + σA + 2σM .

A complete proof is presented in [15, Appendix A]. If we use a blockcipher E, which is secure in the sense
of the PRP notion, instead of Perm(n), then the corresponding complexity theoretic result can be shown
by a standard argument. See e.g. [8].

We note that, in general, the privacy of CLOC is broken if the nonce is reused. However, as long
as (Ni, Ai) ̸= (Nj , Aj) holds for all 1 ≤ i < j ≤ q, the bound in Theorem 1 holds. This is because, in
the proof in [15, Appendix A], the transition from CLOC to CLOC5 works without the nonce-respecting
assumption, and HASH5 and PRF5 used in CLOC5 generate random and independent output values if
(Ni, Ai) ̸= (Nj , Aj) holds for all 1 ≤ i < j ≤ q.

Authenticity Notion. We next define the authenticity notion, which captures the unforgeability of an
adversary in a chosen ciphertext attack setting. We consider a strong adversary that can repeat the
same nonce multiple times. Let A be an adversary that has access to the CLOC encryption oracle and
the CLOC decryption oracle. The encryption oracle is defined as above. The decryption oracle takes
(N,A,C, T ) ∈ NCLOC ×ACLOC × CCLOC × TCLOC as input and returns M ← CLOC-DK(N,A,C, T ) or
⊥ ← CLOC-DK(N,A,C, T ). The authenticity advantage is defined as

Advauth
CLOC[E,ℓN ,τ ](A)

def
= Pr

[
ACLOC-EK(·,·,·),CLOC-DK(·,·,·,·) forges

]
,

where the probability is taken over K
$← KCLOC and the randomness of A, and the adversary forges

if the decryption oracle returns a bit string (other than ⊥) for a query (N,A,C, T ), but (C, T ) was
not previously returned to A from the encryption oracle for a query (N,A,M). The adversary A in
the authenticity game is not necessarily nonce-respecting, and A can make two or more queries with
the same nonce. Specifically, A can repeat using the same nonce for encryption queries, a nonce used for
encryption queries can be used for decryption queries and vice-versa, and the same nonce can be repeated
for decryption queries. Without loss of generality, we assume that A does not make trivial queries, i.e.,
if the encryption oracle returns (C, T ) for a query (N,A,M), then A does not make a query (N,A,C, T )
to the decryption oracle, and A does not repeat a query.

Authenticity Theorem. Let A be an adversary that makes q encryption queries and q′ decryption queries.
Let (N1, A1,M1), . . . , (Nq, Aq,Mq) be the encryption queries, and (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
q′ , A

′
q′ , C

′
q′ , T

′
q′)

be the decryption queries. Then we define the total associated data length in encryption queries as
a1 + · · ·+ aq, the total plaintext length as m1 + · · ·+mq, the total associated data length in decryption
queries as a′1+ · · ·+a′q′ , and the total ciphertext length as m′

1+ · · ·+m′
q′ , where (Ai[1], . . . , Ai[ai])

n← Ai,

(Mi[1], . . . ,Mi[mi])
n←Mi, (A

′
i[1], . . . , A

′
i[a

′
i])

n← A′
i, and (C ′

i[1], . . . , C
′
i[m

′
i])

n← C ′
i. We have the following

information theoretic result.

Theorem 2. Let Perm(n), ℓN , and τ be the parameters of CLOC. Let A be an adversary that makes
at most q encryption queries and at most q′ decryption queries, where the total associated data length
in encryption queries is at most σA, the total plaintext length is at most σM , the total associated data
length in decryption queries is at most σA′ , and the total ciphertext length is at most σC′ . Then we have
Advauth

CLOC[Perm(n),ℓN ,τ ](A) ≤ 5σ2
auth/2

n + q′/2τ , where σauth = q + σA + 2σM + q′ + σA′ + σC′ .

A complete proof is presented in [15, Appendix A]. As in the privacy case, if we use a blockcipher E
secure in the sense of the PRP notion, then we obtain the corresponding complexity theoretic result by
a standard argument in, e.g., [8].

4 Features

CLOC has the following features.

1. It uses only the encryption of the blockcipher both for encryption and decryption, and does not use
bit-wise operations, such as a constant multiplication over GF(2n).
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2. It makes ⌈|N |/n⌉ + ⌈|A|/n⌉ + 2⌈|M |/n⌉ blockcipher calls for a nonce N , associated data A, and a
plaintext M , when |A| ≥ 1. No precomputation other than the blockcipher key scheduling is needed.
We note that in CLOC, 1 ≤ |N | ≤ n−1 holds (hence we always have ⌈|N |/n⌉ = 1), and when |A| = 0,
it needs ⌈|N |/n⌉+ 1 + 2⌈|M |/n⌉ blockcipher calls.

3. It works with two state blocks (i.e. 2n bits).
4. Both encryption and decryption can be processed in an online manner.
5. Static associated data can be processed efficiently if the corresponding intermediate state value is

stored.
6. For security, the privacy and authenticity are proved based on the PRP assumption of the blockci-

pher, assuming standard nonce-respecting adversaries. Moreover, the authenticity is proved with even
stronger, nonce-reusing adversaries.

The second feature implies that a number of blockcipher calls required for processing short input data,
say 16 or 32 bytes, is small. In particular, CLOC works without any precomputation of the blockcipher,
say, computation of EK(0n). The precomputation of CLOC is essentially the blockcipher key schedule,
hence it can efficiently handle short input data even without precomputation. This feature is particularly
desirable for low-power sensor networks, where messages are typically quite short and the devices have
limited computational power. CLOC is designed to be used in embedded processors, but this feature may
also be useful for powerful processors, for example when the key is frequently changed or when a large
number of keys need to be processed. For example, when the input data consists of 1-block nonce, 1-block
associated data, and 1-block plaintext, CLOC needs 4 blockcipher calls, while we need 5 or 6 calls in
CCM [12], 7 calls (where 3 out of 7 can be precomputed) in EAX [9], and 5 calls (where 1 out of 5 can
be precomputed) in EAX-prime [7], where the last one is insecure [24].

The first and the third features imply that CLOC works with small memory and its efficiency for
processors with small words (say 8 or 16 bits). With these features CLOC is particularly suitable for
embedded processors with severe ROM/RAM constraints. The last feature implies that CLOC provides
standard security as a nonce-based AEAD, and in addition a level of security (i.e. authenticity only) even
when the nonce is reused, unlike many previous nonce-based AEADs.

Advantages over AES-GCM. Compared with AES-GCM [23], CLOC works efficiently for short input
data on embedded processors, and the implementation of CLOC with AES can be smaller, as we do not
use the full GF multiplier. In particular, AES-GCM is generally inefficient on embedded processors, since
the GF multiplier is not fast (e.g. see [14]), while CLOC with AES can be efficiently implemented. For
CLOC with TWINE, we expect even smaller implementation, at the cost of reduced security, which will
be useful for ultimately tiny processors.

With respect to the security, the provable security bound of CLOC for authentication is better, since
the bound of GCM has a term q′(ℓA + 1)/2τ , which grows linearly with the block length ℓA of the
associated data [17], while the corresponding term in CLOC is q′/2τ . This may have impact when τ is
small. Furthermore, in GCM, the existence of weak keys was pointed out [26], while weak keys are not
known in CLOC. Also, CLOC provides some level of security even if the nonce is reused.

Justifications of Parameter Sets. For the 128-bit blockcipher, we select AES for its excellent performance
and extensively studied security. For the 64-bit blockcipher, we select TWINE for its suitability for
embedded processors (comparable speed to AES, smaller code size), and good performance even for high-
end platforms with SIMD operations [30]. Notably, TWINE allows efficient processing of two blocks in
parallel for a wide range of platforms, which is desirable for CLOC, since in CLOC, the encryption process
and tag generation can be done in parallel.

For aes128n12t8clocv2, we select ℓN = 96 from the current trend on the length of the nonce, and
this is suitable, for instance, if a part of the nonce is randomly chosen and the other part consists of a
counter. For aes128n8t8clocv2, we select ℓN = 64 considering the data overhead, and this is suitable for
applications where the nonce consists of a counter. For twine80n6t4clocv2, we select ℓN = 48 by taking
the half of 96 in aes128n12t8clocv2. For all cases, the tag length was chosen by taking the balance
between the security and the data overhead.

Limitations. We also list several limitations of CLOC. For long input data, CLOC is not efficient as it
needs two blockcipher calls per one plaintext block. The nonce length is fixed, which may be problematic
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in some applications. The four functions used in CLOC, HASH, ENC, DEC, and HASH, are all sequential.
However, the blockcipher calls in ENC and PRF can be done in parallel. We also note that the paralleliza-
tion is always possible for multiple messages [11,10]. Due to the existence of five tweak functions, the
hardware implementation of CLOC does not show the smallest size compared to existing schemes, since
the implementation of tweak functions requires many selectors.

5 Design Rationale

The designers have not hidden any weaknesses in this cipher. The design rationale of CLOC is detailed
in [15], and we repeat the rationale below.

Our goal is to provide an AEAD particularly efficient for processing short input data, while minimizing
the memory consumption and precomputation outside the blockcipher. We mainly focus on constrained
sensor networks, where each data packet is short. For example, Zigbee [6] limits the maximum packet
length to 127 bytes, Bluetooth low energy limits to 47 bytes [1], and many previous proposals on sensor
network security protocols, e.g., TinySec [18], defined similar limits, around 30 to 128 bytes. Another
example is EPC tag, which is a replacement of bar-code using RFID and has typically 96 bits [2]. We
here describe the design rationale of CLOC for achieving our goal.

At abstract level CLOC is a straightforward combination of CFB and CBC MAC, where CBC MAC
is called twice for processing associated data and a ciphertext, and CFB is called once to generate a
ciphertext. However, when we want to achieve low-overhead computation and small memory consumption,
we found that any other combination of a basic encryption mode and a MAC mode did not work. For
instance, we could not use CTR or OFB, as they require one state block in processing a plaintext to hold
a counter value or a blockcipher output. We then realized that combining CFB and CBC MAC was not
an easy task. Since we avoid using two keys or using blockcipher pre-calls, such as L = EK(0n) used in
EAX, we could not computationally separate CFB and CBC MAC via input masking, such as Galois-field
doubling (2iL for the i-th block, where 2L denotes the multiplication of 2 and L in GF(2n)) [9,28]. This
implies that CFB leaks input and output pairs of the blockcipher calls, which can be freely used to guess
or fake the internal chaining value of CBC MAC, leading to a break of the scheme. Lucks [20] proposed
an AEAD scheme based on CFB, called CCFB. However, the problem is not relevant to CCFB due to the
difference in the global structure. To overcome this obstacle in composition, we introduced the bit-fixing
functions. Their role is to absolutely separate the input blocks of CFB and the first input block of CBC
MAC. This imposes the most significant one bit of the input of CBC MAC being fixed to 0, implying
one-bit input loss. The set of five tweak functions is used to compensate for this information loss. It also
works to compensate the information loss caused by padding functions applied to the last input block
to CBC MAC. A similar technique can be found in literature [25,31], however, the previous works only
considered MACs and the tweak functions required bit operations.

In the following we explain the specific requirements for the tweak functions.

Definition of f1, f2, g1, g2, and h. These functions are defined to meet the following properties. First, they
have the additive property. That is, for any z ∈ {f1, f2, g1, g2, h}, we have z(X⊕X ′) = z(X)⊕z(X ′) for all
X,X ′ ∈ {0, 1}n. Next, these functions are invertible over {0, 1}n. For any z ∈ {f1, f2, g1, g2, h}, we have
z ∈ Perm(n). Finally, they satisfy the differential probability constraints specified in Fig. 9. Let z be a
function in Fig. 9. Then we require that, for any Y ∈ {0, 1}n, Pr[z(K) = Y ] = 1/2n, where the probability

is taken over K
$← {0, 1}n. When z is of the form z = z′⊕ z′′, then z(K) stands for z′(K)⊕ z′′(K). When

z is of the form z = z′z′′, then z(K) stands for z′(z′′(K)). Recall that we define i as i(K) = K.

Choosing Tweak Functions. Finding simple and word-wise tweak functions fulfilling all properties is not
a trivial task. We start with matrix M of (1), which is invertible and has order 15 (i.e. M15 = M0),
and test all combinations of the form (f1, f2, g1, g2, h) = (i1, . . . , i5) ∈ {1, . . . , 14}5, where i1 = 2 means
f1(X) = X ·M2, using a computer. There are 864 candidates out of 537,824 fulfilling the differential
probability constraints of Fig. 9. The complexity increases as the index of M grows, when we implement
the tweak function by iterating M, which seems suitable for hardware. For software we would directly
implement Mi using a word-wise permutation and xor, and in this case we observe slight irregular, but
similar phenomena (e.g. M1 needs one xor while M3 needs three xor’s). Fig. 10 shows Mi and the Feistel-
like implementations using a word-wise permutation and xor. It shows that, except for M5 and M10, we
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i⊕ f1
i⊕ g1f1
i⊕ g1f1h
i⊕ g2f1
i⊕ g2f1h
i⊕ f1h
i⊕ f2
i⊕ g1f2
i⊕ g1f2h
i⊕ g2f2
i⊕ g2f2h

i⊕ f2h
i⊕ h
i⊕ g1
i⊕ g2
f1 ⊕ g1f1h
f1 ⊕ g2f1h
f1 ⊕ f2
f1 ⊕ g1f2
f1 ⊕ g1f2h
f1 ⊕ g2f2
f1 ⊕ g2f2h

f1 ⊕ f2h
f2 ⊕ g1f1
f2 ⊕ g1f1h
f2 ⊕ g2f1
f2 ⊕ g2f1h
f2 ⊕ f1h
f2 ⊕ g1f2h
f2 ⊕ g2f2h
g1 ⊕ g2
h⊕ f1
h⊕ g1f1

h⊕ g2f1
h⊕ f2
h⊕ g1f2
h⊕ g2f2
g1f1 ⊕ f1h
g1f1 ⊕ g2f1h
g1f1 ⊕ g2f2
g1f1 ⊕ g2f2h
g1f1 ⊕ f2h
g2f1 ⊕ g1f1h
g2f1 ⊕ f1h

g2f1 ⊕ g1f2h
g2f1 ⊕ f2h
g1f2 ⊕ g2f1
g1f2 ⊕ g2f1h
g1f2 ⊕ f1h
g1f2 ⊕ g2f2h
g1f2 ⊕ f2h
g2f2 ⊕ g1f1h
g2f2 ⊕ f1h
g2f2 ⊕ g1f2h
g2f2 ⊕ f2h

Fig. 9. Differential probability constraints of f1, f2, g1, g2, and h

have a simple implementation using at most four xor’s. Based on these observations, we simply define
the cost of computing Mi as i for 1 ≤ i ≤ 7 and 15− i for 8 ≤ i ≤ 14. Then we define fcost(i1, . . . , i5) as(

i1 ×
1

16
+ i2 ×

15

16

)
× 2 + i4 + i5 ×

1

2
.

This corresponds to the expected total cost for given (i1, . . . , i5), where associated data and a plaintext
are assumed to be non-empty byte strings of random lengths, (as we expect the standard use of CLOC
is AEAD, not MAC), and the most significant bit of the associated data is assumed to be random. Then
there remains only two candidates giving the minimum value of fcost, which are (i1, . . . , i5) = (8, 1, 2, 1, 4)
and (8, 1, 6, 1, 4). As smaller i3 is better, we choose the former as the sole winner. We also tested other
matrices, say the one replacing the forth column of M by the transposition of (1, 0, 1, 0), but no better
solution was found.

We note that M8 = M2 ⊕M0 and M4 = M1 ⊕M0 hold, implying that we have f1(X) = g1(X)⊕X
and h(X) = f2(X)⊕X = g2(X)⊕X, which may be useful in some implementations.

Selection of Blockciphers. For n = 128, we choose AES as the underlying blockcipher, because the security
of AES has been extensively studied. For n = 64, we choose TWINE as the underlying blockcipher,
because of its low-resource implementation for embedded processors shown in [30]. The use of 64-bit
blockcipher is particularly useful if input length is quite short, say a few bytes, which is in fact possible
for ultimately constrained, single-purpose sensors such as energy harvester devices like [3], gas or water
metering, etc. In such cases, a 128-bit blockcipher can be inefficient, since it is likely that we have more
redundant output bits from the blockcipher that has to be discarded.

6 Intellectual Property

We claim no intellectual property (IP) rights associated to CLOC other than its internal blockcipher, and
are unaware of any relevant IPs to CLOC held by others. NEC Corporation (NEC) has pending patent
applications related to its TWINE blockcipher proposal in CLOC: WO2011052585 and WO2011052587.
In case that CLOC with TWINE blockcipher is included into the final portfolio, NEC is willing to provide
to implementors, solely for the purpose of implementing CLOC, a royalty-free, non-exclusive license under
the patents issuing on such patent applications, to the extent such patents are essential to implement
CLOC as set forth in the final portfolio, provided said that implementor extends a reciprocal royalty-free
license.

If any of this information changes, the submitter will promptly (and within at most one month)
announce these changes on the crypto-competitions mailing list.

7 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee regarding the selec-
tion or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist,
a member of the final portfolio, or any other designation provided by the committee. The submitters
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Fig. 10. Matrix exponentiations for the tweak functions

understand that the committee will not comment on the algorithms, except that for each selected algo-
rithm the committee will simply cite the previously published analyses that led to the selection of the
algorithm. The submitters understand that the selection of some algorithms is not a negative comment
regarding other algorithms, and that an excellent algorithm might fail to be selected simply because not
enough analysis was available at the time of the committee decision. The submitters acknowledge that
the committee decisions reflect the collective expert judgments of the committee members and are not
subject to appeal. The submitters understand that if they disagree with published analyses then they
are expected to promptly and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitters understand that this statement is required as a condition of consideration of
this submission by the CAESAR selection committee.
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A TWINE Blockcipher [30]

We describe TWINE blockcipher by reusing materials from [30].

Data Processing Part. TWINE is a 64-bit blockcipher with 80 or 128-bit keys. We write TWINE-80 or
TWINE-128 to denote the key length. We here focus on TWINE-80, which is used in CLOC. The global
structure of TWINE is a variant of Type-2 generalized Feistel structure (GFS) with 16 nibbles (i.e. 4-bit
sub-blocks). A round function of TWINE consists of a nonlinear layer using 4-bit S-boxes and a diffusion

13

https://groups.google.com/forum/#!forum/crypto-competitions
http://eprint.iacr.org/
http://www.ietf.org/mail-archive/web/cfrg/current/msg03433.html
http://www.ietf.org/mail-archive/web/cfrg/current/msg03433.html
http://eprint.iacr.org/2012/018
http://eprint.iacr.org/
http://eprint.iacr.org/


layer, which is a permutation on 16 nibbles. The diffusion layer of TWINE is not a cyclic shift and is
chosen to provide a better diffusion property than the cyclic shift, according to the result of Suzaki and
Minematsu [29]. This round function is iterated for 36 times for both key lengths, where the diffusion
layer of the last round is omitted. For i = 1, . . . , 36, the i-th round uses a 32-bit round key, RKi, which
is derived from the 80-bit secret key, K, using the key schedule.

The data processing part essentially consists of a 4-bit S-box, denoted by S, and a permutation π
over the indexes of 4-bit nibbles. That is, we have π : {0, . . . , 15} → {0, . . . , 15}, where the j-th sub-
block is mapped to the π[j]-th sub-block. Fig. 11 shows the encryption procedure, TWINE.Enc, and the
decryption procedure, TWINE.Dec, using the derived round keys. Fig. 11 also shows S-box S, and the
permutation π and its inverse. In all figures of this section, a variable X may have a subscript (i) to
express its length, i.e., X may be written as X(|X|), for clearness. The round function is also illustrated
in Fig. 13.

Key Schedule Part. The key schedule produces RK(32×36) from the 80-bit secret key K. It is also a
variant of GFS with nibbles using the same S-box as data processing part. The key schedule uses 6-bit
round constants, CONi

(6) = CONi
H(3)∥CONi

L(3) for i = 1 to 35. Fig. 12 shows the pseudocode of the key
schedule, and Fig. 14 illustrates the key schedule for one round. In Fig. 12 Roti(x) means i-bit left cyclic
shift of x. We remark that CONi corresponds to 2i in GF(26) with primitive polynomial z6 + z + 1. The
values of CONi are also listed at Fig. 12.

We provide a test vector in Table 4.

Algorithm TWINE.Enc(P(64), RK(32×36), C(64))

1. X1
0(4)∥X1

1(4)∥ . . . ∥X1
15(4) ← P

2. RK1
(32)∥ . . . ∥RK36

(32) ← RK(32×36)

3. for i = 1 to 35 do
4. RKi

0(4)∥RKi
1(4)∥ . . . ∥RKi

7(4) ← RKi
(32)

5. for j = 0 to 7 do
6. Xi

2j+1 ← S(Xi
2j ⊕ RKi

j)⊕Xi
2j+1

7. for h = 0 to 15 do
8. Xi+1

π[h] ← Xi
h

9. for j = 0 to 7 do
10. X36

2j+1 ← S(X36
2j ⊕ RK36

j )⊕X36
2j+1

11. C ← X36
0 ∥X36

1 ∥ . . . ∥X36
15

Algorithm TWINE.Dec(C(64), RK(32×36), P(64))

1. X36
0(4)∥X36

1(4)∥ . . . ∥X36
15(4) ← C

2. RK1
(32)∥ . . . ∥RK36

(32) ← RK(32×36)

3. for i = 36 to 2 do
4. RKi

0(4)∥RKi
1(4)∥ . . . ∥RKi

7(4) ← RKi
(32)

5. for j = 0 to 7 do
6. Xi

2j+1 ← S(Xi
2j ⊕ RKi

j)⊕Xi
2j+1

7. for h = 0 to 15 do
8. Xi−1

π−1[h]
← Xi

h

9. for j = 0 to 7 do
10. X1

2j+1 ← S(X1
2j ⊕ RK1

j )⊕X1
2j+1

11. P ← X1
0∥X1

1∥ . . . ∥X1
15

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 0 F A 2 B 9 5 8 3 D 7 1 E 6 4

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π[h] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

π−1[h] 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12

Fig. 11. Data processing part of TWINE (top) with S-box S (middle) and permutation π (bottom)

Table 4. A test vector of TWINE-80 in hexadecimal notation

key (80 bits) 00112233 44556677 8899

plaintext 01234567 89ABCDEF

ciphertext 7C1F0F80 B1DF9C28
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Algorithm TWINE.KeySchedule-80(K(80), RK(32×36))

1. WK0(4)∥WK1(4)∥ . . . ∥WK19(4) ← K
2. for r = 1 to 35 do
3. RKr

(32) ←WK1∥WK3∥WK4∥WK6∥WK13∥WK14∥WK15∥WK16

4. WK1 ←WK1 ⊕ S(WK0)
5. WK4 ←WK4 ⊕ S(WK16)
6. WK7 ←WK7 ⊕ 0∥CONr

H

7. WK19 ←WK19 ⊕ 0∥CONr
L

8. WK0∥ . . . ∥WK3 ← Rot4(WK0∥ . . . ∥WK3)
9. WK0∥ . . . ∥WK19 ← Rot16(WK0∥ . . . ∥WK19)

10. RK36
(32) ←WK1∥WK3∥WK4∥WK6∥WK13∥WK14∥WK15∥WK16

11. RK← RK1∥RK2∥ . . . ∥RK36

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CONi 01 02 04 08 10 20 03 06 0C 18 30 23 05 0A 14 28 13 26

i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CONi 0F 1E 3C 3B 35 29 11 22 07 0E 1C 38 33 25 09 12 24

Fig. 12. Key schedule of TWINE-80. S-box S is the same as Fig. 11.

Fig. 13. Round function of TWINE
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Fig. 14. 80-bit key schedule

B Changes

B.1 Changes from CLOC v1 to CLOC v2

The specification of CLOC v2 uses param so that the encryption and decryption algorithms depend on the
choice of the parameters, which are E, ℓN , and τ . This type of dependency was previously highlighted,
e.g., in [13,21,27]. There are three things to note:

– The introduction of param does not mean that CLOC v2 handles variable length nonces nor variable
length tags. All the parameters, E, ℓN , and τ , have to be fixed during the lifetime of the secret key.

– The introduction of param does not affect the provable security result of CLOC, since we may consider
param ∥N as a nonce, and then the provable security results in [15] still hold.
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– We also note that param does not remove the dependency to other blockcipher modes of operation.
For instance the concurrent use (with the same secret key) of CLOC and ECB mode results in the
loss of security. Similarly, CLOC and SILC cannot be used concurrently.

The following part of the document was updated.

– The condition on the nonce length was updated to 1 ≤ ℓN ≤ n− 9 to handle param.
– Lines 10 and 12 in the definition of HASH in Fig. 2 were updated to concatenate param to N .
– Figures 3 and 6 were updated.
– Sect. 1.3 was updated. The parameter space was reduced so that different parameters can be encoded

into param, and Table 1 was added.
– Sect. 6, Intellectual Property, was updated.
– We also made minor changes.
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