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This document specifies KђѦюј v2, a parameterized permutation-based authenticated
encryption schemewith support for associated data and sessions. As for KђѦюј v1, its un-
derlying permutation is Kђѐѐюј-p. It is however based on a new mode, called Motorist,
which is more efficient than the modes underlying KђѦюј v1 and relies on some recently
published insights for its provable generic security. KђѦюј v1 consisted of four named
instances. For KђѦюј v2, we now formulate a generic definition and added one named
instance. In the remainder of this document we denote KђѦюј v2 simply as KђѦюј. The
named KђѦюј instances are aimed at a wide spectrum of platforms, both dedicated hard-
ware and soĞware ranging from 32-bit embedded processors to modern PC processors
with SIMD units and multiple cores.

The remainder of this document is structured as follows. In Section 1 we specify Mo-
torist and provide a motivation for introducing it. In Section 2 we specify KђѦюј, its com-
ponents, named instances and security claim. In Section 3 we treat the provable generic
security of Motorist, its implications for KђѦюј and discuss the state-of-the-art of crypt-
analysis of KђѦюј. We explain how KђѦюј addresses the CAESAR call for proposals in
Section 4. Finally, Appendix A contains a change log.

1 Definition of the Motorist authenticated encryption mode

The mode Motorist supports the authenticated encryption of sequences of messages in
sessions. During a session, it processes messages and cryptograms. A message consists
of a plaintext and possible associated data (called metadata in the remainder of this doc-
ument). For each message, it wraps it by enciphering the plaintext into a ciphertext and
computing a tag over the full sequence of messages. A cryptogram consists of a cipher-
text, possible metadata and a tag. For each cryptogram, it unwraps it by deciphering the
ciphertext into a plaintext, verifying the tag, and returning the plaintext if the tag is valid.
A message can also consist of metadata alone and the corresponding cryptogram does
not have any ciphertext. Within a session, the tag of a cryptogram authenticates the full
sequence of messages sent/received since the start of the session. The start of a session
requires a secret key and possibly a nonce, if the secret key is not unique for this session.

The mode Motorist is sponge-based and supports one or more duplex instances op-
erating in parallel. It makes duplexing calls with input containing key, nonce, plaintext
and metadata bits and uses its output as tag or as key stream bits.

The duplex instances in Motorist differ from the original duplex construction [3] in
that they accept input blocks as large as the width of the permutation (aĞer padding),
instead of only the outer part. This variant, initialized with a secret key and denoted full-
state keyed duplex (FSKD), was introduced byMennink, Reyhanitabar and Vizár [12]. They
proved a strong result on the generic security of the FSKD. More precisely they give an
upper bound on the advantage of distinguishing a FSKD calling a random permutation
from a random oracle, that is quite close to that of the original keyed duplex construc-
tion [1]. This means that increasing the input block length from the rate (r bits) to the
width of the permutation (b bits) has no noticeable impact on the generic security, while
allowing the injection ofmore bits per call to the underlying permutation, thus improving
performance.

The mode Motorist supports a parameterized degree of parallelism. This allows ex-
ploiting resources such as single-instructionmultiple-data (SIMD) instructions inmodern
CPUs or pipelining in dedicated hardware. The Motorist distributes the message (plain-
text and metadata) over the different duplex instances, where each input bit is absorbed
in a single duplex instance. To produce a tag that depends on the full message and not
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Figure 1: A session inMotorist. First, the session is started with a given secret and unique
value (SUV). Optionally, a tag T(0) on SUV can be produced or verified. Then, Motorist
processes both the plaintext P(1) and metadata A(1) in parallel. The plaintext P(1) is en-
crypted into ciphertext C(1) and T(1) authenticates (SUV, P(1), A(1)). AĞer processing the
second message, T(2) authenticates (SUV, P(1), A(1), P(2), A(2)), and aĞer the third mes-
sage, T(3) authenticates the full session (SUV, P(1), A(1), P(2), A(2), P(3), A(3)), where P(3)

is the empty string.
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only on the message bits that have been injected in a single duplex instance, Motorist
performs some dedicated processing at the end of each message called a knot. It extracts
chaining values from each duplex instance, concatenates them, and injects them into all
duplex instances. Thismakes the state of all duplex instances depend on the full sequence
of messages. Then it extracts a tag from a single duplex object.

To start a session, Motorist takes as input a string that must be secret and (globally)
unique. We call this string the secret and unique value (SUV). If the SUV consists of a key
and a nonce, we recommend the key comes first. Motorist injects the SUV into each du-
plex instance, appending a diversification string at the end to make their states different.
Figure 1 illustrates a session in Motorist.

A singleMotorist session can be used to secure two-way communication between two
parties. In that case, one must clearly indicate for each message who is its sender. This
can be done by including its identifier in the metadata of the message. Alternatively, one
can rely on a strict convention, such as messages alternating in the two directions. In the
case of a session that is dedicated to unwrapping only, the Motorist session being started
does not have to impose the nonce requirement to the SUV.

1.1 Motivation for the introduction of the Motorist mode

From a bird’s eye perspective, Motorist offers the same functionality as the modes un-
derlying KђѦюј v1 and still builds on the security of the sponge construction, although
rather a variant. Still, in the transition from KђѦюј v1 to KђѦюј v2, the modes have been
significantly refactored. In this section we explain the reasons behind the change and its
benefits.

The main reasons to migrate to a new permutation-based authenticated encryption
mode taking the place of DѢѝљђѥWџюѝ and KђѦюјLіћђѠ are the following:
Reducing computational cost for short messages Per message that contains plaintext,

DѢѝљђѥWџюѝ makes at least two calls to the permutation f : one call for absorb-
ing the (possibly empty) metadata and producing the key stream, and one call for
absorbing the plaintext and producing the tag. By supporting output blocks to be
used partially as tag and partially as key stream and supporting the combination of
metadata and plaintext in a single input block, this can be reduced to one call to f .

Reducing computational cost for long messages AĞer the publication of [12] we real-
ized that increasing the length of input blocks from r to b bits (aĞer padding) has
no impact on the generic security bounds that can be proven for the keyed sponge
and duplex construction. This allows absorbing up to c = b− r additional bits per
call to f .

Once the decision was taken to have a new mode, we decided that the following fea-
tures of DѢѝљђѥWџюѝ and KђѦюјLіћђѠ should be preserved:
In-place encryption and decryption In DѢѝљђѥWџюѝ, state bits before absorbing a block

of plaintext correspond to key stream bits, and they become ciphertext bits aĞer-
wards. So the encryption/decryption operation coincides with the absorbing oper-
ation. This means that no buffer is necessary and plaintext or ciphertext bits can
be processed as they arrive. To preserve this feature, this implies that the plaintext
fragment is limited to the outer part of the input blocks.

Sessions During a session, a tag of a cryptogram authenticates the full sequence of mes-
sages since the start of the session and only a single nonce (if any) is required per
session.
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Authentication-only The mode supports the (efficient) generation of tags over messages
consisting of metadata only.

Stream-compatible For its operation the mode does not require prior knowledge of the
length of plaintext, ciphertext or metadata.

Word-alignment The mode can be instantiated such that it processes data in 64-bit or
32-bit units, without the need for additional bit- or byte-shuffling.

Universal The mode can be applied to any fixed-length permutation with sufficient
width.

Additionally, we took into account the following requirements, which were not satis-
fied by DѢѝљђѥWџюѝ and KђѦюјLіћђѠ:

Uniformity The specification of the mode should cover at the same time serial and par-
allel instances.

Synchronicity The parallel instances should run synchronously, with the calls to f ap-
pearing systematically at the same time on all instances, and with input blocks con-
taining the same types of fragments.

As a result of the new design, two new features appeared:

Tag on session setup The setup of a session can return a tag, or can be subject to a tag.
So when two communicating entities both start a Motorist session, one of them can
send the tag (and if required the nonce) to the other one that can then set up the same
session on the condition that the tag it receives is valid (for the common nonce). The
benefit is that no unwrapping process can start unless a legitimate session is started.

Integrated forgeĴing The mechanism that Motorist uses for making the tag depend on
the state of all duplex instances has as side effect that knowledge of the full state does
not allow the reconstruction of the state prior to the wrapping (unwrapping) of the
current message (cryptogram). We call this feature forgeĴing. It is also supported
in the setup of a session and hence a key that is loaded during session setup cannot
be recovered from the state. For serial instances, this feature can be switched off for
increasing performance.

AĞer the design, two important changes became apparent:

Metadata absorbing during and aĞer plaintext While in DѢѝљђѥWџюѝ the metadata of
a message is in the input blocks strictly before those with the plaintext, in Motorist
metadata is input together with the plaintext and possibly in input blocks aĞer it.

Length-coding instead of trailing frame bits and multi-rate padding For domain sepa-
ration and decodability, Motorist makes use of length coding with a number of in-
tegers present in each input block delimiting messages and indicating where in the
input blocks the plaintext andmetadata fragments are. We call these the fragment off-
sets. In DѢѝљђѥWџюѝ it was important to reduce the overhead of frame and padding
bits to a minimum as they reduce the usable rate. In Motorist this is less critical as
these integers are in the inner part of the input blocks.

6



1.2 The layered structure

WespecifyMotorist in three layers, each handling a different aspect. The input and output
strings processed in these layers are described in terms of byte streams, i.e., a string of bytes
that can be read from and/or wriĴen to sequentially. Using streams instead of traditional
strings brings the specification closer to the implementation, where, e.g., the input data
is processed as it arrives and its length is not necessarily known in advance. We call a
sequence of consecutive bytes from a stream a fragment.

The layers are, from boĴom to top:

Piston This layer keeps a b-bit state and applies the permutation f to it. It performs the
basic functions such as injecting data, possible simultaneous encryption or decryp-
tion, extracting tags and seĴing the fragment offsets. It has a squeezing rate, the
classical sponge rate, and an absorbing rate, the state width minus the last part con-
taining the fragment offsets. When being called to inject, it receives a reference to a
byte stream and it puts a fragment that is as long as the input block can hold or that
exhausts the input byte stream, and sets the corresponding fragment offsets to the
correct value. When being called to encrypt or decrypt, it puts a plaintext fragment
that covers the remaining outer part of the input block or that exhausts the input
byte stream, and sets the corresponding fragment offset.

Engine This layer controls Π ≥ 1 Piston objects that operate in parallel. It serves as a dis-
patcher keeping its Piston objects busy, imposing that they are all treating the same
kind of request. It can also inject the same stream into all Piston objects collectively.
The Engine also ensures that the SUV and message sequence can be reconstructed
from the sponge input to each Piston object and that each output bit of its Piston
objects is used at most once.

Motorist This layer implements the user interface. It supports the starting of a session
and subsequent wrapping of messages and unwrapping of cryptograms by driving
the Engine.

1.3 Conventions

Before we describe the three layers in details, we define the conventions we use.
A bit is an element of Z2. A n-bit string is a sequence of bits represented as an element

of Zn
2 . By convention the first bit in the sequence is wriĴen on the leĞ side, i.e., the first

element in the string (b0, b1, . . . , bn−1) is b0. The set of bit strings of all lengths is denoted
Z∗2 and is defined as

Z∗2 = ∪∞
i=0Zi

2.

The length in bits of a string s is denoted |s|. The concatenation of two strings a and
b is denoted a||b. In some cases, where it is clear from the context, the concatenation is
simply denoted ab.

A byte is a string of 8 bits, i.e., an element of Z8
2. The byte (b0, b1, . . . , b7) can

also be represented by the integer value ∑i 2ibi wriĴen in hexadecimal. E.g., the byte
(0, 1, 1, 0, 0, 1, 0, 1) can be equivalently wriĴen as 0xA6. When the length of a bit string
is a multiple of 8, it can also be represented as a sequence of bytes, and vice-versa.
E.g., the bit string (0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1) can also be wriĴen as the sequence
(0, 1, 1, 0, 0, 1, 0, 1) (0, 0, 1, 1, 1, 1, 1, 1) or 0xA6 0xFC.

The function enc8(x) encodes the integer x, with 0 ≤ x ≤ 255, as a byte with value x.
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In our specification we make use of byte streams. In actual implementations, they can
take the form of pointers to some buffer, bytes arriving from, or sent to, some commu-
nication channel, and so on. What is important is that a realization supports the set of
functions defined here. We indicate byte streams by capital leĴers such as X and denote
operations using the convention X.DќSќњђѡѕіћє, popular in object oriented program-
ming. Concretely, a byte stream is a string of bytes that supports the following functions,
similarly to a queue:

• z← X.PѢљљBѦѡђ removes the first byte of stream X and assigns it to z;

• X.PѢѠѕBѦѡђ(z) appends byte z to the end of the stream X;

• X.HюѠMќџђ returns a Boolean value that indicates whether stream is empty (FюљѠђ)
or not (TџѢђ);

• (X = Y) returns a Boolean value that is TџѢђ iff streams X and Y have the same
content;

• X.Cљђюџ: removes all bytes from stream X.

At some places we speak of input byte streams and output byte streams. An input byte
stream does not have to support PѢѠѕBѦѡђ(z) and an output byte stream does not have
to support PѢљљBѦѡђ.

In the specification of Motorist we define a number of types (classes) of objects, each
having a specific set of aĴributes and supporting a specific set of functions. When instan-
tiating an object, the value of a number of parameters are determined and the aĴributes
are initialized. Once an object is instantiated, it can be used by calling its functions. In
between calls, the aĴributes of the object keep their values. We denote objects by a name,
such as Piston and their functions (aĴributes) by the name followed by a dot and the
name of the function (aĴribute), possibly with some arguments, such as Piston.Iћїђѐѡ(X).
When a byte stream figures as the parameter in a function call, it should be seen as a ref-
erence to the byte stream being passed. The object supporting the called function can use
this reference to perform operations on the byte stream.

1.4 The Piston

Piston is specified in Algorithm 1. It uses a permutation f operating on b-bit state denoted
as s. During instantiation, the Piston state is initialized to all-zero. In the algorithm, we
use s[i] to denote byte i of the state s, where indexing starts from 0. The other parameters
of Piston are the squeezing byte rate Rs and the absorbing byte rate Ra with Rs ≤ Ra.

At Piston-level there is no distinction betweenmetadata, SUV and chaining values and
we will use the term metadata to cover all three. When properly used (i.e., through an
Engine), the Piston builds a full-width input block from plaintext, metadata and encoding
of fragments offsets, formaĴed as follows:

• possibly a number of zero bytes, starting at index 0;

• possibly a plaintext fragment, starting aĞer the zero bytes, and finishing at most at
index Rs;

• possibly a metadata fragment, starting at index 0 (if no plaintext fragment) or at
index Rs (otherwise), and finishing at most at index Ra;

• the fragment offsets.
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AĞer the application of f , the bytes of the outer part of the state are used as follows:

• possibly a number of bytes used as tag, starting at index 0;

• possibly a number of bytes used as key stream, starting aĞer the possible tag.

There are four fragment offsets:

EOM This fragment offset has a double function. First, it codes the number of bytes in
the next output block that are used as tag, and that will consequently not be used as
key stream. Second, it delimits messages by having a non-zero value if it is part of
an input block that is the last of a message or of a string that is injected collectively.
In case no tag is requested at the end ofmessage or string that is injected collectively,
EOM takes the value 255. The value 248 and above have a special meaning and are
reserved for future use.

Crypt End This codes the end of the plaintext fragment in the current input block. The
start of the plaintext fragment is coded by EOM in the previous input block, where
the value 255 means that the plaintext fragment starts at index 0.

Inject Start This codes the start of the metadata fragment in the current input block.
If there is also a plaintext fragment in the current input block, then the metadata
fragment starts at Inject Start = Rs. Otherwise, the metadata fragment starts at
Inject Start = 0.

Inject End This codes the end of the metadata fragment in the current input block.

In the algorithm, the aĴributes EOM, Crypt End, Inject Start and Inject End are the in-
dexes where the fragment offsets are coded.

The function Piston.CџѦѝѡ(I, O, ω,ёђѐџѦѝѡFљює) supports the combined encryption of
plaintext (or decryption of ciphertext) and absorbing of the corresponding plaintext into
the outer part of the state. The Boolean ёђѐџѦѝѡFљює indicates whether it is encryption
(FюљѠђ) or decryption (TџѢђ). Here I denotes the input byte stream containing the plain-
text to be encrypted or ciphertext to be decrypted and O the output byte stream where
the result will be wriĴen to. The parameter ω specifies the index in the state from where
the plaintext fragment must be injected. The fragment will end at index Rs or earlier if
the input stream is exhausted. It codes the end of the plaintext fragment in the offset
Crypt End.

The function Piston.Iћїђѐѡ(X, ѐџѦѝѡіћєFљює) injects metadata taken from the input
stream X. The Boolean parameter indicates whether the current input block already has
a plaintext fragment (TџѢђ) or not (FюљѠђ). If so, Piston starts injecting from index Rs,
otherwise it starts from index 0. The metadata fragment will end at index Ra or earlier
if the input stream is exhausted. It codes the start of the metadata fragment in the offset
Inject Start and its end in Inject End.

The function Piston.Sѝюџј(ђќњFљює, ℓ) applies the underlying permutation f to the
state. Before it does that, it codes in the data element EOM whether this is the last input
block of a message (or of string injected collectively) as indicated by ђќњFљює and, if so,
the number ℓ of bytes of the state aĞer the application of f that are reserved as tag.

Finally, the function Piston.GђѡTює(T, ℓ) writes the first ℓ bytes of the state to output
byte stream T, to be used as a tag or chaining value.

The description of Piston assumes that the plaintext and metadata input streams do
not refill between inject and crypt calls. More exactly, if the function X.HюѠMќџђ re-
turns FюљѠђ for an input stream X, it must keep doing so for that stream until next call
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Figure 2: The Engine phases. An Engine object starts in fresh.

to Piston.GђѡTює(). This also means that if an input block contains a plaintext fragment,
this must be announced before injecting metadata.

As long as this constraint is respected, one could implement Piston differently such
that it allows more freedom in the order that the plaintext and metadata are absorbed.
These may be offered in short chunks and even in an alternating fashion.

1.5 The Engine

Engine is specified in Algorithm 2. It controls and relies on an array of Π Piston objects
that operate in parallel. For each piston, Engine remembers in the aĴribute Et howmuch
output was used as tag or chaining value, so as to pass this to Piston.CџѦѝѡ() and avoid re-
using the bits as key stream. Engine also maintains a state machine via the aĴribute ѝѕюѠђ
to govern the sequence of function calls supported and thereby to enforce consistency.

The phase is illustrated on Figure 2 and mainly indicates how the Π input blocks are
being constructed in the Π Piston objects:

fresh They are empty.

crypted They have a plaintext fragment and more plaintext is coming.

endOfCrypt They have a plaintext fragment and no more plaintext is coming.

endOfMessage They have their fragments ready and the message has been fully injected.

The application of f on the Π states is centralized in the Engine.Sѝюџј(ђќњFљює, ℓ)
internal function. This function takes as input a flag telling whether the message (or the
string injected collectively) is finished and how many bits to reserve for a tag or for a
chaining value. This last parameter, ℓ, is in fact a vector, allowing one to take a different
number of bits in each Piston, and these numbers are stored in Et.
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Algorithm 1 Definition of PіѠѡќћ[ f , Rs, Ra]

Require: Rs is the squeezing rate in bytes
Require: Ra is the absorbing rate in bytes, with Rs ≤ Ra ≤ b−32

8 < 248
Convention: I, X input and O, T output byte streams

Instantiation: Piston← PіѠѡќћ[ f , Rs, Ra]
State: s← 0b

Offsets: (EOM,Crypt End, Inject Start, Inject End)← (Ra, Ra + 1, Ra + 2, Ra + 3)

Interface: Piston.CџѦѝѡ(I, O, ω,ёђѐџѦѝѡFљює) with ω ≤ Rs
while (I.HюѠMќџђ = TџѢђ) AND (ω < Rs) do

x ← I.PѢљљBѦѡђ
O.PѢѠѕBѦѡђ(s[ω]⊕ x)
if ёђѐџѦѝѡFљює = TџѢђ then

s[ω]← x
else

s[ω]← s[ω]⊕ x
ω ← ω + 1

s[Crypt End]← s[Crypt End]⊕ enc8(ω)

Interface: Piston.Iћїђѐѡ(X, ѐџѦѝѡіћєFљює)
if ѐџѦѝѡіћєFљює = TџѢђ then

ω ← Rs
else

ω ← 0
s[Inject Start]← s[Inject Start]⊕ enc8(ω)
while (X.HюѠMќџђ = TџѢђ) AND (ω < Ra) do

s[ω]← s[ω]⊕ X.PѢљљBѦѡђ
ω ← ω + 1

s[Inject End]← s[Inject End]⊕ enc8(ω)

Interface: Piston.Sѝюџј(ђќњFљює, ℓ) with ℓ ≤ Rs
if ђќњFљює = TџѢђ then
if ℓ = 0 then

s[EOM]← s[EOM]⊕ enc8(255)
else

s[EOM]← s[EOM]⊕ enc8(ℓ)
else

s[EOM]← s[EOM]⊕ enc8(0)
s← f (s)

Interface: Piston.GђѡTює(T, ℓ) with ℓ ≤ Rs
for i← 0 to ℓ− 1 do

T.PѢѠѕBѦѡђ(s[i])
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The function Engine.CџѦѝѡ(I, O,ёђѐџѦѝѡFљює) dispatches the input I to the Π Piston
objects and collects the corresponding Π output in O. Each Piston object takes a fragment
from I, so the Pistons process in total up to ΠRs bytes. The phase switches to crypted, or
to endOfCrypt if the input stream is exhausted. The ёђѐџѦѝѡFљює is as for Piston.CџѦѝѡ().

The function Engine.Iћїђѐѡ(A) dispatches the metadata A to the Π Piston objects.
Each Piston object takes a fragment from A, so the Pistons process in total up to Π(Ra −
Rs) bytes (if Engine.CџѦѝѡ()was called before) or ΠRa bytes (otherwise). If both the input
and themetadata streams are exhausted, it switches the phase to endOfMessage and delays
the application of f until the call to Engine.GђѡTюєѠ(). Otherwise, it calls Engine.Sѝюџј()
to perform f on all Π Piston objects and switches the phase back to fresh.

The function Engine.GђѡTюєѠ(T, ℓ) calls Piston.Sѝюџј() on all Π Piston objects and
collects the corresponding tags into the output stream T. It then switches the phase back
to fresh. The parameter ℓ is as in Engine.Sѝюџј().

The function Engine.IћїђѐѡCќљљђѐѡіѣђ(X,ёіѣђџѠіѓѦFљює) aims at injecting the same
metadata X to all Π Piston objects. It is used to inject the SUV and the chaining values.
When ёіѣђџѠіѓѦFљює = TџѢђ, as set when injecting the SUV, it appends to X two bytes:

1. one byte encoding the degree of parallelism Π, for domain separation between in-
stances with a different number of Piston objects, and

2. one byte encoding the index of the Piston object, for domain separation between
Piston objects and in particular to avoid identical key streams.

AĞer the whole stream X is processed, the phase is switched to endOfMessage.

1.6 The Motorist

Motorist is specified in Algorithm 3. It uses an Engine object, calling a parameterized
number Π of Piston objects. A Motorist object is also parameterized by the alignment
unit W in bits, typically 32 or 64. This ensures that the fragment start offsets and the
length of tags, chaining values and fragments (except when a stream is exhausted) are
a multiple of W, allowing data to be manipulated in multi-byte chunks. The remaining
parameters determine the security strength: the capacity c and the tag length τ. From
these, the Motorist object derives the following quantities:

• the squeezing byte rate Rs, the largest multiple of W such that at least max(c, 32)
bits (for the inner part and for the fragment offsets) of the state are never used as
output;

• the absorbing byte rate Ra, the largest multiple of W that reserves at least 32 bits at
the end of the state for absorbing the fragment offsets;

• the chaining value length c′, the smallest multiple of W greater than or equal to the
capacity c.

Motorist maintains its own state machine via the aĴribute ѝѕюѠђ. The possible phases
are:

ready The Motorist object is initialized and no input has been given yet.

riding The Motorist object processed the SUV and is able to (un)wrap. The object stays
in this phase until an error occurs.

12



Algorithm 2 Definition of Eћєіћђ[Π, Pistons]
Require: Pistons is an array of Π pistons, with 1 ≤ Π ≤ 255
Convention: I, A, X input and O, T output byte streams

Instantiation: Engine← Eћєіћђ[Π, Pistons]
Phase of the Engine: ѝѕюѠђ← fresh
Output bytes reserved for tag: Et ← 0Π ∈NΠ

Interface: Engine.CџѦѝѡ(I, O,ёђѐџѦѝѡFљює)
if ѝѕюѠђ ̸= fresh then return error
for i← 0 to Π− 1 do Pistons[i].CџѦѝѡ(I, O, Et[i],ёђѐџѦѝѡFљює)
if I.HюѠMќџђ = TџѢђ then
ѝѕюѠђ← crypted

else
ѝѕюѠђ← endOfCrypt

Interface: Engine.Iћїђѐѡ(A)
if ѝѕюѠђ /∈ {fresh, crypted, endOfCrypt} then return error
ѐџѦѝѡіћєFљює← (ѝѕюѠђ ∈ {crypted, endOfCrypt})
for i← 0 to Π− 1 do Pistons[i].Iћїђѐѡ(A, ѐџѦѝѡіћєFљює)
if (ѝѕюѠђ = crypted) OR (A.HюѠMќџђ = TџѢђ) then

Engine.Sѝюџј(FюљѠђ, 0Π)
ѝѕюѠђ← fresh

else
ѝѕюѠђ← endOfMessage

Interface: Engine.GђѡTюєѠ(T, ℓ) with ℓ ∈NΠ

if ѝѕюѠђ ̸= endOfMessage then return error
Engine.Sѝюџј(TџѢђ, ℓ)
for i← 0 to Π− 1 do Pistons[i].GђѡTює(T, ℓ[i])
ѝѕюѠђ← fresh

Interface: Engine.IћїђѐѡCќљљђѐѡіѣђ(X,ёіѣђџѠіѓѦFљює)
if ѝѕюѠђ ̸= fresh then return error
Let Xt be an array of Π local byte streams, initially empty
while X.HюѠMќџђ = TџѢђ do

x ← X.PѢљљBѦѡђ
for i← 0 to Π− 1 do Xt[i].PѢѠѕBѦѡђ(x)

if ёіѣђџѠіѓѦFљює = TџѢђ then
for i← 0 to Π− 1 do Xt[i].PѢѠѕBѦѡђ(enc8(Π))
for i← 0 to Π− 1 do Xt[i].PѢѠѕBѦѡђ(enc8(i))

while Xt[0].HюѠMќџђ = TџѢђ do
for i← 0 to Π− 1 do Pistons[i].Iћїђѐѡ(Xt[i], FюљѠђ)
if Xt[0].HюѠMќџђ = TџѢђ then Engine.Sѝюџј(FюљѠђ, 0Π)

ѝѕюѠђ← endOfMessage

Internal interface: Engine.Sѝюџј(ђќњFљює, ℓ) with ℓ ∈NΠ

for i← 0 to Π− 1 do Pistons[i].Sѝюџј(ђќњFљює, ℓ[i])
Et ← ℓ
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failed The Motorist object received an incorrect tag.

To make a tag depend on the state of the Π > 1 Piston objects, or when Π = 1 and
forgeĴing is requested, the Motorist object performs an operation that we call a knot. This
is the purpose of the Motorist.MюјђKћќѡ() function. This function first retrieves a c′-bit
chaining values from each Piston object, concatenates these to make a Π × c′-bit string
and collectively injects it into all Piston objects. For Π > 1, this makes the state of all
Piston objects depend on each other. A fortiori this is also the case for Pistons[0], from
which the tag of a message is extracted.

For the chaining values we have a length of at least c bits so that the probability of
collisions in the chaining values is not larger than that of collisions in the inner part of
the state (see Section 3.2). In addition, the chaining value of Pistons[0] is injected exactly
where it was extracted, resulting into seĴing c′ bits of the outer part to zero. This chaining
value is also injected in the remaining Π− 1 states. To compute backwards in any of the
Piston objects, an adversary would then have to guess c′ ≥ c bits, hence protecting the Π
state(s) before the knot, if some leakage occurs aĞer the knot. The knot is illustrated in
Figure 3.

T

Figure 3: A knot. In this case, Π = 4. Each line represents the state of a piston, from
Pistons[0] at the boĴom to Pistons[3] at the top. Chaining values taken from all the pis-
tons are injected collectively into the four pistons. The arrows show how the chaining
values are injected in Pistons[0], and the same values are injected symmetrically in the
other pistons, but to avoid overloading the figure we did not draw the corresponding ar-
rows. The c′ first bits of Pistons[0]’s state are injected back, thereby seĴing them to zero,
as symbolized by the red cross. If a tag is taken, it is taken from Pistons[0], whose state
now depends on all pistons.

The function Motorist.SѡюџѡEћєіћђ(SUV, ѡюєFљює, T,ёђѐџѦѝѡFљює, ѓќџєђѡFљює) be-
gins a session with the given SUV read from the SUV byte stream. It collectively in-
jects it, with ёіѣђџѠіѓѦFљює = TџѢђ for domain separation as explained above. The
parameter ѓќџєђѡFљює tells whether a knot is necessary. The starting of a session sup-
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ports the generation or verification of a tag by seĴing the parameter ѡюєFљює to TџѢђ. If
ёђѐџѦѝѡFљює = FюљѠђ, it returns a tag in the byte stream T and otherwise it verifies the
tag read from T. Unless the tag verification fails, it switches the phase to riding.

The functionMotorist.Wџюѝ(I, O, A, T,ёђѐџѦѝѡFљює, ѓќџєђѡFљює)wraps amessage or
unwraps a cryptogram.

• Towrap, the functionmust be calledwith ёђѐџѦѝѡFљює = FюљѠђ, I (resp. A) an input
byte stream containing the plaintext (resp. themetadata),O (resp. T) an output byte
stream ready to get the ciphertext (resp. the tag) and ѓќџєђѡFљює.

• To unwrap, the function must be called with ёђѐџѦѝѡFљює = TџѢђ, I (resp. A, T) an
input byte stream containing the ciphertext (resp. the metadata, the tag) and O an
output byte stream ready to get the plaintext and ѓќџєђѡFљює. The function returns
TџѢђ if the tag is correct and FюљѠђ otherwise. In addition, it clears the byte stream
O if the tag is incorrect.

The function starts by processing the input and the metadata. When the input stream is
exhausted, it continues processing any remaining metadata. Note that when called with
empty input and metadata streams, it performs a call to Engine.Iћїђѐѡ() to ensure that
the Engine object enters the endOfMessage phase. Then, if ѓќџєђѡFљює = TџѢђ or Π > 1,
the function calls Motorist.MюјђKћќѡ() . Finally, it generates or verifies the tag.

Once a session is started with Motorist.SѡюџѡEћєіћђ(), the Motorist object can receive
as many calls to Motorist.Wџюѝ() as desired. The nonce requirement (i.e., that the SUV
is unique) plays at the level of the session. Within a session, messages have no explicit
message number or nonce. However, the communicating partiesmust process them in the
same order for the tags to verify. An alternative way to see this concept of session is that it
supports intermediate tags. This allows the two parties to communicate in both directions
in a single session by seĴing appropriately ёђѐџѦѝѡFљює in the calls to Motorist.Wџюѝ().
Note that, as the state of the Piston objects depends on whether a tag is requested or
not (when calling Motorist.SѡюџѡEћєіћђ()) and whether a knot is performed or not, the
communicating parties must use synchronized values for the ѡюєFљює and ѓќџєђѡFљює
parameters.

1.7 Illustrations

In this subsection, we illustrate theMotoristmode by showing the input block constructed
by the mode and its underlying layers Engine and Piston. By “input block”, we mean the
sequence of bytes that are absorbed into the state between calls to the permutation f . Note
that the input blocks are the same for wrapping and unwrapping.

We do not depict output blocks as they can be easily deduced:

• a tag is output by extracting the first τ/8 bytes (16 bytes in the examples here) of
the state aĞer the last block is processed;

• key stream bytes used to encrypt (or decrypt) a given plaintext fragment are taken
before the plaintext fragment is XORed, at the corresponding location in the state.

1.7.1 Conventions

The conventions we use in this subsection are illustrated in Figures 4 and 5. Figure 4
shows how we draw input blocks in the case of Π = 1. Two types of input blocks are
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Algorithm 3 Definition of MќѡќџіѠѡ[ f , Π, W, c, τ].
Require: Π is the number of pistons, with 1 ≤ Π ≤ 255
Require: W is the alignment unit in bits, with W a strictly positive multiple of 8
Require: c is the required capacity in bits, with

⌈ c
W
⌉
≤

⌊
b−max(c,32)

W

⌋
Require: τ is the tag length in bits, a multiple of W and τ ≤ b−max(c, 32)

Instantiation: Motorist← MќѡќџіѠѡ[ f , Π, W, c, τ]

Squeezing byte rate: Rs ← W
8

⌊
b−max(c,32)

W

⌋
Absorbing byte rate: Ra ← W

8

⌊
b−32

W

⌋
Chaining value length: c′ ←W

⌈ c
W
⌉

for i← 0 to Π− 1 do Pistons[i]← PіѠѡќћ[ f , Rs, Ra]
Engine: Engine← Eћєіћђ[Π, Pistons]
Phase: ѝѕюѠђ← ready

Interface: џђѠ← Motorist.SѡюџѡEћєіћђ(SUV, ѡюєFљює, T,ёђѐџѦѝѡFљює, ѓќџєђѡFљює)
if ѝѕюѠђ ̸= ready then return error
Engine.IћїђѐѡCќљљђѐѡіѣђ(SUV,TџѢђ)
if ѓќџєђѡFљює = TџѢђ then Motorist.MюјђKћќѡ()
џђѠ← Motorist.HюћёљђTює(ѡюєFљює, T,ёђѐџѦѝѡFљює)
if џђѠ = TџѢђ then ѝѕюѠђ← riding
return џђѠ

Interface: џђѠ← Motorist.Wџюѝ(I, O, A, T,ёђѐџѦѝѡFљює, ѓќџєђѡFљює)
if ѝѕюѠђ ̸= riding then return error
if (I.HюѠMќџђ = FюљѠђ) AND (A.HюѠMќџђ = FюљѠђ) then

Engine.Iћїђѐѡ(A)
while I.HюѠMќџђ = TџѢђ do

Engine.CџѦѝѡ(I, O,ёђѐџѦѝѡFљює)
Engine.Iћїђѐѡ(A)

while A.HюѠMќџђ = TџѢђ do
Engine.Iћїђѐѡ(A)

if (Π > 1) OR (ѓќџєђѡFљює = TџѢђ) then Motorist.MюјђKћќѡ()
џђѠ = Motorist.HюћёљђTює(TџѢђ, T,ёђѐџѦѝѡFљює)
if џђѠ = FюљѠђ then O.Cљђюџ
return џђѠ

Internal interface: Motorist.MюјђKћќѡ()
Let T′ be a local byte stream, initially empty
Engine.GђѡTюєѠ(T′, [c′/8]Π)
Engine.IћїђѐѡCќљљђѐѡіѣђ(T′,FюљѠђ)

Internal interface: џђѠ← Motorist.HюћёљђTює(ѡюєFљює, T,ёђѐџѦѝѡFљює)
Let T′ be a local byte stream, initially empty
if ѡюєFљює = FюљѠђ then

Engine.GђѡTюєѠ(T′, 0Π)
else

Engine.GђѡTюєѠ(T′, [τ/8, 0Π−1])
if ёђѐџѦѝѡFљює = FюљѠђ then
Copy T′ into T

else if T′ ̸= T then
ѝѕюѠђ← failed
return FюљѠђ

return TџѢђ
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illustrated: one containing both plaintext and metadata fragments, and another contain-
ing only a metadata fragment. The figure also gives the location of the fragment offsets.
Figure 5 displays the convention used when Π > 1, where input blocks that can be si-
multaneously processed are “glued” together.

(plaintext fragment) (metadata fr.) EOM CE IS = Rs IE
(metadata fragment) EOM CE IS = 0 IE

Figure 4: Convention for displaying input blocks. Each input block is enclosed in a rect-
angle. Distinct blocks are separated by a small space. Within a block, we distinguish
between the location containting the plaintext fragment (possibly empty), the one for
the metadata fragment and the four fragment offsets. The fragment offsets Crypt End,
Inject Start and Inject End are abbreviated into CE, IS and IE, respectively. Note that
Inject Start can take only two values, 0 or Rs, depending on the presence or absence of
a plaintext fragment.

(piston #0’s metadata fragment) EOM CE IS IE
(piston #1’s metadata fragment) EOM CE IS IE
(piston #2’s metadata fragment) EOM CE IS IE
(piston #3’s metadata fragment) EOM CE IS IE

Figure 5: Convention for displaying input blocks when Π > 1. The convention is illus-
trated for Π = 4 as an example. The Π blocks that are processed together by the Engine
have no space in between.

1.7.2 Detailing Figure 1

We now illustrate what happens for the session depicted in Figure 1 with one call to
Motorist.SѡюџѡEћєіћђ() and then wrapping three messages (A(1), P(1)), (A(2), P(2)) and
(A(3), P(3)), with P(3) the empty string.

First, the Motorist object processes the secret and unique value SUV and produces a
tag T(0). Figure 6 illustrates this for Π = 1 and assuming that SUV fits in one block, while
Figure 7 illustrates the case Π = 4.

SUV 1 0 0∗ 16 0 0 ≤ Ra

Figure 6: Example of input block corresponding to the absorbing of SUV fiĴing in one
block. The two bytes with value 1 and 0 that follow SUV encode Π = 1 and i = 0. Then a
number of 0 bytes fill the rest of the metadata fragment. EOM = 16 as 16 bytes of tag are
requested. There is no plaintext fragment, hence Crypt End = Inject Start = 0. The value
of Inject End is the length of SUV plus 2.

Then, theMotorist object receives the first message (A(1), P(1)), where we assume that
|A(1)|

Ra−Rs
> |P(1)|

Rs
, so that the plaintext is exhausted before the metadata is, as suggested on

Figure 1. Figure 8 illustrates this case for Π = 1.
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SUV 4 0 0∗ 16 0 0 ≤ Ra
SUV 4 1 0∗ 255 0 0 ≤ Ra
SUV 4 2 0∗ 255 0 0 ≤ Ra
SUV 4 3 0∗ 255 0 0 ≤ Ra

Figure 7: Same as Figure 6 but with Π = 4. Notice that the 16-byte tag is taken only from
the first piston (EOM = 16) and not from the others (EOM = 255).

Note that if no tag was requested upon calling Motorist.SѡюџѡEћєіћђ(), we would see
EOM = 255 on all pistons in Figures 6 and 7, and the first plaintext fragment would be
P0 with |P0| = Rs (instead of 016||P0). See also Figure 11.

016 P0 A0 0 Rs Rs Ra

P1 A1 0 Rs Rs Ra
…

P♢ 0∗ Ax 0 ≤ Rs Rs Ra

Ax+1 0 0 0 Ra
…

A△ 0∗ 16 0 0 ≤ Ra

Figure 8: Input blocks for processing (A(1), P(1)). We assume that A(1) = A0|| . . . ||Ax
||Ax+1|| . . . ||A△, with |Ai| = Ra − Rs for i ≤ x, |Ai| = Ra for x < i ̸=△ and |A△| ≤ Ra.
Similarly, we assume that P(1) = P0|| . . . ||P♢, with |P0| = Rs − 16, |Pi| = Rs for 0 < i ̸= ♢
and |P♢| ≤ Rs.

Next, the Motorist object receives the second message (A(2), P(2)), where we assume
that |A

(2)|
Ra−Rs

< |P(2)|
Rs

. This is somehow the opposite case as the first message, because now
the metadata is exhausted first, again in line with what Figure 1 suggests. Figure 9 illus-
trates this case for Π = 1.

016 P0 A0 0 Rs Rs Ra

P1 A1 0 Rs Rs Ra
…

Px A△ 0∗ 0 Rs Rs ≤ Ra

Px+1 0∗ 0 Rs Rs Rs
…

P♢ 0∗ 0∗ 16 ≤ Rs Rs Rs

Figure 9: Input blocks for processing (A(2), P(2)). We assume that A(2) = A0|| . . . ||A△,
with |Ai| = Ra − Rs for i ̸=△ and |A△| ≤ Ra − Rs. Similarly, we assume that P(2) =
P0|| . . . ||P♢, with |P0| = Rs − 16, |Pi| = Rs for 0 < i ̸= ♢ and |P♢| ≤ Rs.

Finally, the last message that the Motorist object receives is (A(3), ), containing only
metadata. Figure 10 illustrates this case forΠ = 1. Notice that the first block does not start
with 016, even if a tag was requested for the previous message, since metadata require no
key stream output.
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A0 0 0 0 Ra

A1 0 0 0 Ra
…

A△ 0∗ 16 0 0 ≤ Ra

Figure 10: Input blocks for processing (A(3), P(3))with P(3) the empty string. We assume
that A(3) = A0|| . . . ||A△, with |Ai| = Ra for i ̸=△ and |A△| ≤ Ra.

1.7.3 Session of short messages

Figure 11 illustrates a session with short messages. When the plaintext fits in the outer
part and the metadata in the inner part, the user can encrypt and get a tag in just one call
to the permutation per message.

SUV 1 0 0∗ 255 0 0 ≤ Ra

P(1) 0∗ A(1) 0∗ 16 ≤ Rs Rs ≤ Ra

016 P(2) 0∗ A(2) 0∗ 16 ≤ Rs Rs ≤ Ra

016 P(3) 0∗ A(3) 0∗ 16 ≤ Rs Rs ≤ Ra
…

Figure 11: A session with short messages. Here, we assume that |P(1)| ≤ Rs, |P(i)| ≤
Rs − 16 for i > 1, and |A(i)| ≤ Ra − Rs for all i.

1.7.4 Parallelized message and knot

As a last illustration, we display the processing of a message in a parameterized instance,
including a knot. Figure 12 gives the input blocks when Π = 4 for a message (A, P) that
can be processed in 2Π calls to the permutation before the knot. Notice that all pistons
always have the same value for Inject Start. Hence, even if A6 does not have a plaintext
counterpart, we have Inject Start = Rs since other pistons process some plaintext.

2 Definition of KђѦюј

In this section we provide a definition of the parameterized KђѦюј authenticated encryp-
tion scheme, its five named instances parameters fixed and the underlying permutations
and specify the security goals.

2.1 The Kђѐѐюј-p permutations

The Kђѐѐюј-p permutations are derived from the Kђѐѐюј- f permutations [4] and have a
tunable number of rounds. A Kђѐѐюј-p permutation is defined by its width b = 25× 2ℓ,
with b ∈ {25, 50, 100, 200, 400, 800, 1600}, and its number of rounds nr. In a nutshell,
Kђѐѐюј-p[b, nr] consists in the application of the last nr rounds of Kђѐѐюј- f [b]. When
nr = 12 + 2ℓ, Kђѐѐюј-p[b, nr] = Kђѐѐюј- f [b].

The permutation Kђѐѐюј-p[b, nr] is described as a sequence of operations on a state
a that is a three-dimensional array of elements of GF(2), namely a[5, 5, w], with w = 2ℓ.
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016 P0 A0 0 Rs Rs Ra
P1 A1 0 Rs Rs Ra
P2 A2 0 Rs Rs Ra
P3 A3 0 Rs Rs Ra

P4 A4 32 Rs Rs Ra
P5 0∗ A5 32 ≤ Rs Rs Ra
0∗ A6 0∗ 32 0 Rs ≤ Ra
0∗ 0∗ 32 0 Rs Rs

T′0T′1T′2T′3 0∗ 16 0 0 128
T′0T′1T′2T′3 0∗ 255 0 0 128
T′0T′1T′2T′3 0∗ 255 0 0 128
T′0T′1T′2T′3 0∗ 255 0 0 128

Figure 12: Input blocks for processing a message (A, P) when Π = 4. In this figure, we
assume that P = P0|| . . . ||P5, with |P0| = Rs − 16, |Pi| = Rs for 1 ≤ i ≤ 4 and |P5| ≤ Rs.
Similarly, we assume that A = A0|| . . . ||A6, with |Ai| = Ra − Rs for 0 ≤ i ≤ 5 and
|A6| ≤ Ra − Rs. The chaining values are assumed to be 32-byte long, and therefore we
see that EOM = 32 aĞer absorbing the last blocks of message. Together, the chaining
values make up a 128-byte string T′0||T′1||T′2||T′3.

The expression a[x, y, z] with x, y ∈ Z5 and z ∈ Zw, denotes the bit at position (x, y, z).
It follows that indexing starts from zero. The mapping between the bits of s and those of
a is s[w(5y + x) + z] = a[x, y, z]. Expressions in the x and y coordinates should be taken
modulo 5 and expressions in the z coordinate modulo w. We may sometimes omit the [z]
index, both the [y, z] indices or all three indices, implying that the statement is valid for
all values of the omiĴed indices.

Kђѐѐюј-p[b, nr] is an iterated permutation, consisting of a sequence of nr rounds R,
indexed with ir from 12+ 2ℓ− nr to 12+ 2ℓ− 1. Note that ir, the round number, does not
necessarily start from 0. A round consists of five steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with

θ : a[x, y, z] ← a[x, y, z] +
4

∑
y′=0

a[x− 1, y′, z] +
4

∑
y′=0

a[x + 1, y′, z− 1],

ρ : a[x, y, z] ← a[x, y, z− (t + 1)(t + 2)/2],

with t satisfying 0 ≤ t < 24 and
(

0 1
2 3

)t (1
0

)
=

(
x
y

)
in GF(5)2×2,

or t = −1 if x = y = 0,

π : a[x, y] ← a[x′, y′], with
(

x
y

)
=

(
0 1
2 3

)(
x′

y′

)
,

χ : a[x] ← a[x] + (a[x + 1] + 1)a[x + 2],
ι : a ← a + RC[ir].

The additions and multiplications between the terms are in GF(2). With the exception of
the value of the round constants RC[ir], these rounds are identical. The round constants
are given by (with the first index denoting the round number)

RC[ir][0, 0, 2j − 1] = rc[j + 7ir] for all 0 ≤ j ≤ ℓ,
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and all other values of RC[ir][x, y, z] are zero. The values rc[t] ∈ GF(2) are defined as the
output of a binary linear feedback shiĞ register (LFSR):

rc[t] =
(

xt mod x8 + x6 + x5 + x4 + 1
)

mod x in GF(2)[x].

Note that the round index ir can be consideredmodulo 255, the period of the LFSR above.

2.2 The key pack

We encode the key in what we call a key pack. Its purpose is to have a uniform way of
encoding a secret key as prefix of an SUV.

The key pack makes use of simple padding denoted pad10∗[r](|M|). This padding rule
returns a bit string 10q with q = (−|M| − 1) mod r. When r is divisible by 8 and M is a
sequence of bytes, then pad10∗[r](|M|) returns the byte string 0x01 0x00(q−7)/8.

For a key K, we define a key pack of ℓ bytes as

keypack(K, ℓ) = enc8(ℓ)||K||pad10∗[8ℓ− 8](|K|),

where the length of the key K is limited to 8(ℓ− 1)− 1 bits and with ℓ < 256. That is, the
key pack consists of

• a first byte indicating the full length of the key pack in bytes, followed by

• the key itself, followed by

• simple padding.

For instance, the 64-bit key K = 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF yields

keypack(K, 18) = 0x12 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF 0x01 0x008.

2.3 Generic definition of KђѦюј

KђѦюј makes use of MќѡќџіѠѡ[ f , Π, W, c, τ], with f an instance of Kђѐѐюј-p. We have:

KђѦюј[b, nr, Π, c, τ] = MќѡќџіѠѡ[ f , Π, W, c, τ],

with f = Kђѐѐюј-p[b, nr] and W = max( b
25 , 8).

The SUV consists of keypack(K, ℓk)||N with ℓk = W
8

⌈ c+9
W

⌉
and N ∈ Z∗2 with no limi-

tation on its length.

2.4 Named instances of KђѦюј

We have five named instances of KђѦюј, taking on specific parameter values in the avail-
able range. For all five instances, we have nr = 12, c = 256 and τ = 128. In order of
increasing state sizes, the instances are:

Rіѣђџ KђѦюј b = 800, Π = 1

Lюјђ KђѦюј b = 1600, Π = 1 (primary recommendation)

Sђю KђѦюј b = 1600, Π = 2

Oѐђюћ KђѦюј b = 1600, Π = 4
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KђѦюј
plaintext confidentiality min(c/2, |K|)
plaintext integrity min(c/2, |K|, |T|)
associated data integrity min(c/2, |K|, |T|)
public message number integrity min(c/2, |K|, |T|)

Table 1: Security claims for KђѦюј

LѢћюџ KђѦюј b = 1600, Π = 8

For Rіѣђџ KђѦюј, W = 32 and the length of the key pack ℓk is 36 bytes. For the other
instances, W = 64 and ℓk = 40 bytes.

All these instances take a variable-length public message number (or nonce) N, but
no private message number. If the data element N has to have a fixed length, we propose
that it takes 58 bytes for Rіѣђџ KђѦюј and 150 bytes for the other instances. These lengths
are chosen so that keypack(K, ℓk)||N and the two bytes of diversification all fit in exactly
one block.

All KђѦюј instances produce a 128-bit MAC, which can be truncated by the user if
desired. If not truncated, the gap between the ciphertext and the plaintext length is exactly
128 bits. The key size is variable, with aminimum of 128 bits for the targeted security, and
up to a maximum of at least 256 bits (determined by ℓk), as a possible countermeasure
against multi-target aĴacks.

Lюјђ KђѦюј can absorb up to 192 bytes of metadata per call to f or up to 168 of plain-
text, with additionally 24 bytes ofmetadata. For Sђю, Oѐђюћ and LѢћюџKђѦюј, these sizes
are multiplied by Π for every Π parallel calls to f . Rіѣђџ KђѦюј may be of interest for its
smaller state size. It can absorb up to 96 bytes of metadata per call to f or up to 68 of
plaintext, with additionally 28 bytes of metadata.

The KђѦюј instances with Π > 1 can be interesting in a number of cases, in particular
for exploiting SIMD architectures that the parallel evaluation of the Kђѐѐюј round func-
tion can benefit from [6]. Sђю KђѦюј best exploits 128-bit SIMD, while Oѐђюћ KђѦюј best
exploits 256-bit SIMD and LѢћюџ KђѦюј 512-bit SIMD.

2.5 Security goals

Our security claims for KђѦюј are summarized in Table 1, where the security strength is
indicated with the logarithm base 2 of the expected aĴack cost and the unit is the exe-
cution of the underlying permutation, and where |T| is the tag size (i.e., |T| = τ, unless
truncated). In our named instance we target security strength 128 bits by taking c = 256,
τ = 128 and |K| ≥ 128.

Although we make no claims above security strength c/2, we are aware that in most
cases a security strength close to c can be achieved, see Section 3.2.

The security claim in Table 1 assumes adversaries targeting a single key. In multi-
target aĴacks against KђѦюј, the resistance against exhaustive keys may erode from |K|
to |K| − log2 n with n the number of targets. This is the case if n KђѦюј instances are
loadedwith different keys but the samenonce N, and an aĴacker has access to their output
when processing the same input. Note that if an upper limit to n is known, one can have
a security strength of 128 bits by taking sufficiently long keys: |K| ≥ 128 + log2 nmax.
Alternatively, an option that avoids erosion without increasing the length of keys consists
in imposing universal nonce uniqueness. By this we mean that not only the combination
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(K, N)must be unique, but N has to be unique among all KђѦюј instances. Many use cases
actually allow this. For example, one can take as nonce the combination of the unique IDs
of the two communicating devices and a strictly incrementing session counter.

The security claim in Table 1 assume KђѦюј implementations that respect the nonce
requirement on the data element N (mapping to public message number in CAESAR
terminology) and upon unwrapping only release plaintext if the cryptogram has a valid
tag. Not respecting these requirements results in a degradation of security and hence
we strongly advise implementers and users to respect the nonce requirement on N at all
times and never release unverified plaintext. The security degradation is the following.

A nonce-violation on N in general breaks the confidentiality of the plaintext. It leaks
the bitwise difference between the plaintextmessages encrypted under the same N. In the
case of a single, accidental, nonce violation, the situation is just a liĴle bit beĴer than with
a stream cipher, as the leakage is limited to the first block where the input messages start
to differ. Due to the way Motorist works, the subsequent blocks will not lose confiden-
tiality. Release of unverified plaintext also has an impact on confidentiality as it allows
an adversary to harvest key stream that may be used in the future by legitimate parties.
Nonce violation and release of unverified plaintext have no consequences for integrity
and do not put the key in danger for KђѦюј.

2.6 Implementations

The reference implementation can be found in KђѐѐюјTќќљѠ [7].

3 Security rationale

For its generic security, Motorist relies on the full-state keyed duplex (FSKD) construction.
This construction differs from the proper duplex or (sponge) construction in that it al-
lows absorbing data over the complete width of the state, rather than just its outer part.
Squeezing, however, remains limited to the outer part of the state.

We will first formally define FSKD and discuss its generic security, Then we reduce
the generic security of Motorist via the demonstration of decodability. Finally, we discuss
the generic and specific security of KђѦюј.

3.1 The full-state keyed duplex construction

We define the full-state keyed duplex (FSKD) construction in Algorithm 4. It calls a b-bit
permutation f and operates on a b-bit state. The state is initialized with the concatenation
of a secret key K and a string σ0 with |K| + |σ0| = b. Then it supports duplexing calls,
each one taking a b-bit input block σi and returning an r-bit output block Zi. The FSKD is
illustrated in Figure 13.

Clearly, the operation of Motorist can be expressed in terms of calls to FSKD objects.

3.2 Generic security of FSKD

The generic security of the FSKD constructionwas recently investigated byMennink, Rey-
hanitabar and Vizár [12]. The FSKD is actually a slight variant of the object they consider,
as they absorb the key in the inner part, whereas our definition puts the key in the outer
part. When f is a random permutation, they prove an upper bound for the advantage of
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Algorithm 4 The full-state keyed duplex construction FSKD[ f , r]
Require: r < b
Instantiation: FSKD← FSKD[ f , r]
State: FSKD.s← 0b

Interface: Z = FSKD.Init(K, σ0) with K ∈ Z∗2 , σ0 ∈ Z
b−|K|
2 and Z ∈ Zr

2
s← K||σ0
s← f (s)
return ⌊s⌋r

Interface: Z = FSKD.Duplexing(σ) with σ ∈ Zb
2, and Z ∈ Zr

2
s← s⊕ σi
s← f (s)
return ⌊s⌋r

0 f

init

K σ0 Z0

outer
inner

f

duplexing

σ1 Z1

f

duplexing

σ2 Z2

…

Figure 13: The full-state keyed duplex construction

distinguishing it from a random oracle, namely

(1 + 2−r)
M2

2c +
µN
2|K|

, (1)

with b the width of f , c the capacity and r = b− c, and where K is uniformly distributed
over Z

|K|
2 for |K| ≤ c. The budget of the adversary is composed of M, the data complexity

(i.e., the total number of calls to the permutation f by the keyed object(s) under aĴack)
and N the computational complexity (i.e., the total number of blocks queried to the per-
mutation f or its inverse). The parameter µ ≤ M is the total maximum multiplicity [1],
whose value depends on the circumstances of an aĴack, as we discuss below.

The factor µN
2|K|

in the bound (1) suggests that the key strength erodes for adversaries
who can set µ≫ 1. This is however a side-effect of the proof in [12]. By borrowing some
techniques from [1], we can prove a more interesting bound. We state the new bound
without proof in Theorem 1 below, and we will publish the proof in a separate paper.

For an adversary aĴacking one or more FSKD object(s), we define two kinds of mul-
tiplicities, namely the total maximum multiplicity µ and the maximum key multiplicity
µK. They both depend on the set of queries that the adversary makes.
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Definition 1 (Multiplicity). The forward multiplicity of a given outer value a, denoted by
µfw(a), is the number of duplexing calls to FSKD where the outer part of the state is a before
calling f . The backward multiplicity µbw(a) is the number of both duplexing and init calls to
FSKD where the outer part of the state is a aĞer calling f . The total maximum multiplicity µ is

µ = max
a

µfw(a) + max
a

µbw(a) .

The key multiplicity of a given string x, denoted by µK(x), is the number of different init calls
to FSKD with σ0 = x. The maximum key multiplicity µK is

µK = max
x

µK(x) .

Theorem 1 (Improved FSKD bound). The advantage of distinguishing FSKD[ f , r], initialized
with a key K uniformly distributed over Z

|K|
2 for |K| ≤ c, from a random oracle, with f a random

permutation, b its width, c the capacity, and r = b− c the rate, is upper bounded by:

(1 + ϵ)
M2

2c +
µN
2c +

µK N
2|K|

,

with ϵ = 2−(r−2) + 2−min(|K|,r) and where M is the data complexity (i.e., the total number of
blocks fed to the full-state keyed duplex object), N the computational complexity (i.e., the total
number of blocks queried to the permutation or its inverse), µ the total maximum multiplicity and
µk the maximum key multiplicity.

In the typical case of M < 2r/2, nonce-respecting adversaries will be confronted with
a total maximum multiplicity µ = 2 with overwhelming probability. An adversary that
violates the nonce requirement and gets to start q sessions can increase the multiplicity to
q/2.

For an aĴack targeting a single key, the maximum key multiplicity equals 1. For at-
tacks targetingmultiple keys, it is upper bound by that number of keys. By imposing that
σ0 is a global nonce, one can limit the maximum key multiplicity to 1 also for multi-target
aĴacks. Note that if σ0 can be imposed as global nonce, Theorem 1 allows taking a key as
short as the security strength.

Note that if for Motorist the SUV consists of the key followed by a nonce, together
fiĴing in a single input block, σ0 is synonymous to the nonce. Otherwise, application of
Theorem 1 requires making the distinction between the first part of SUV and the remain-
ing part. We conjecture that our proof for can be adapted to cover multi-block SUV and
yielding the same bound, and with µK defined in terms of the full SUV rather than just its
part injected in the first block. For simplicity, we will assume a single-input-block SUV
when discussing maximum key multiplicity.

3.3 Decodability of Motorist

Lemma1. For any sequence of queries Q to aMotorist instance that does not result in an error, and
knowing when a knot occurs, the SUV and the full sequence of messages can be unambuguously
recovered from the input block sequences to its Piston objects.

Proof. (sketch) By the finite state machine implemented in its ѝѕюѠђ, the Engine will make
exactly one single inject call and at most one crypt call in between spark calls. Moreover,
at the end of processing a message, an SUV or a knot operation, it will indicate this in
the spark call and retrieve tags. So, in each input block, each Piston sets its four fragment
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offsets to the correct values. As explained in Section 1.4, the EOM allows delimiting the
last input blocks containing SUV, the last input block containing message input and the
last input blocks containing chaining values. In combination with EOM for the previous
input block, the offset Crypt End allows determining the plaintext fragments in an an in-
put block. Metadata, SUV or chaining value fragments can be determined with offsets
Inject Start and Inject End. Once all fragments are identified, the SUV, plaintext, meta-
data and chaining values of messages can be reconstructed by simply concatenating the
fragments. ⊓⊔

3.4 Security of Motorist

From Lemma 1 it follows that if the SUV is unique per session, the tags and key streams
are as hard to distinguish from random strings as indicated in Theorem 1. This covers
privacy.

For authenticity, we have to consider the tag consisting of output bits of the Pistonwith
index 0. It depends on the output bits of the other Piston objects via the chaining values.
An adversary could try to build a forgery bymeans of a collision in such a chaining value,
This would require a pair of query sequences Q and Q′ that exhibit this collision. Due
to the fact that Engine imposes synchronicity between Piston objects, the two colliding
Piston sponge inputs must have the same length, be initialized with the same SUV and
have the same diversifiers to be usable for a forgery. It follows that any new aĴempt to
generate a collision requires a new session. As for the success probability, the chaining
values have length c′ ≥ c and they are FSKD outputs. A collision in such a chaining value
can have two causes. Either there is an inner collision in FSKD. This would constitute
however distinguishing it from a random oracle and is hence covered by the bound in
Theorem 1. Or there is no inner collision but just an output collision. The probability of
that happening is upper bounded by q2/2c+1, with q the total number of sessions started.

This gives the following bounds:

Theorem 2. The authenticated encryption mode Motorist defined in Section 1.6 satisfies

Advpriv
MќѡќџіѠѡ[ f ,Π,W,c,τ](A) ≤ (1 + ϵ)

M2

2c +
µN
2c +

µkN
2|K|

and

Advauth
MќѡќџіѠѡ[ f ,Π,W,c,τ](A) ≤ (1 + ϵ)

M2

2c +
µN
2c +

µkN
2|K|

+
q2

2c+1 +
S
2τ

,

against any single adversary A if K $←− Z
|K|
2 , f is a randomly chosen permutation and with

• M: the total number of calls to f by Motorist due to queries of the adversary;

• q: the total number of calls to Motorist.SѡюџѡEћєіћђ() by the adversary;

• N: the total number of direct queries to f or its inverse by the adversary;

• S ≤ M: the total number of forged tags the adversary submits;

• µ: the total maximum multiplicity;

• µk: the maximum key multiplicity.
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3.5 Security of KђѦюј

For the security of KђѦюј against generic aĴacks, we can simply apply Theorem 2. Note
that for the estimation of the maximum keymultiplicity µK, wemust distinguish between
the part of the SUV injected in the same block as the key pack, and the remaining part.
In case the SUV fits in a single block, this distinction evaporates. Note that the generic
security strength achieved for the named KђѦюј versions is higher than the 128 bits in
the KђѦюј security claims (see Section 2.5) for nonce-respecting adversaries. Due to the
fact that in any real-world aĴack we have M < 2r/2, nonce-respecting adversaries will
be confronted with a total maximum multiplicity µ = 2 with overwhelming probability.
So against nonce-respecting adversaries one can even aĴain 256 bits of security, assuming
reasonable data complexity.

As for non-generic aĴacks, we believe that the permutations Kђѐѐюј-p[1600, nr = 12]
and Kђѐѐюј-p[800, nr = 12] do not have properties that could be exploited to mount at-
tacks that would be more efficient than generic ones. Regarding the properties of under-
lying permutations, we refer to [2, Chapter 8] for examples of properties that are relevant
in the scope of sponge functions, as well as our own and all the third-party cryptanaly-
sis of Kђѐѐюј [5]. We note in particular that the algebraic degree of the permutation as a
function of the number of rounds most likely reaches a high enough level aĞer 12 rounds
[8, 11].

The most powerful aĴacks on modes using Kђѐѐюј-p are the cube aĴacks in [9, 10].
The application of full-state absorbing gives the aĴacker more degrees of freedom than
the ones exploited in those papers. We have studied these aĴacks to see whether they can
be improved for KђѦюј and they can. Our preliminary findings are the following:

• A full state recovery aĴack on all namedKђѦюј instanceswith the number of rounds
reduced to 6. It requires Y = 220 sessions with a chosen (first of a session) message
and identical nonces to recover 12 state bits. Obtaining the full inner part of the
state requires repeating this 128 times (or 64 for Rіѣђџ KђѦюј) and some additional
queries, so it can be done in about 227 single-message sessions.

• Similar aĴack on 7 rounds. It takesY = 240 sessions to recover 24 state bits, requiring
a total of about 246 sessions.

Closer investigation may reveal that we can reduce the number of required sessions Y
due to the fact that less bits have to be guessed for controlling the propagation of our
structure. It is not clear to us whether the aĴack extends to 8 rounds. If so, it would
require 285 sessions and hence would pose no practical threat. Moreover, the probability
that less bits must be guessed decreases with the number of rounds. We believe the 12
rounds we took still provide a comfortable safety margin. We plan to publish our aĴacks
soon in a separate paper.

4 Using KђѦюј in the context of CAESAR

In this section we explain how to use KђѦюј in the context of the CAESAR competition.

4.1 Specification and security goals

The specifications can be found in Section 2 and the security goals in Section 2.5.
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4.2 Security analysis and design rationale

The security analysis and design rationale can be found in Section 3.
As a generic property of sponge-based schemes, note that in a block cipher based

scheme, the block length n puts a limit of about 2n/2 before collisions occur in the input
blocks. In contrast, in sponge-based schemes, the capacity c takes the place of the block
length in this limit. In KђѦюј, the capacity is c = 256.

KђѦюј has the following security assurance features:

• Generic security of the Motorist mode.

• Security assurance from cryptanalysis of Kђѐѐюј. Note that thanks to theMatryosh-
ka property, most analysis performed onKђѐѐюј- f [1600] transfers to Kђѐѐюј- f [800].

The designers have not hidden anyweaknesses in this cipher or any of its components.
We believe this to be impossible. For Kђѐѐюј- f and its round-reduced versions, all design
choices are documented and explained in [4]. For the layers above, rationales are given
in Section 3.

4.3 Features

We would like to highlight the following features of KђѦюј, for which our proposal com-
pares favorably to AES-GCM.

• As a functional feature not present in most authenticated ciphers, KђѦюј supports
sessions. In a session, sequences of messages can be authenticated rather than a
single message. The session is initialized by loading the key and nonce and the
tag for each message authenticates the complete sequence of messages preceding it.
During the session, the communicating entities have to keep state.

• An important advantage of KђѦюј is its hardware efficiency, with a beĴer perfor-
mance/cost trade-off compared to AES-GCM. It is based on the same primitive as
that of SHA-3, therefore allowing to re-use resources when hashing is also needed.

• The round function can be easily protected against different types of side channel
aĴacks.

4.4 Intellectual property

We did not submit any patents on KђѦюј and do not intend to do so. If any of this infor-
mation changes, the submiĴers will promptly (and within at most one month) announce
these changes on the crypto-competitions mailing list.

4.5 Consent

The submiĴers hereby consent to all decisions of the CAESAR selection commiĴee re-
garding the selection or non-selection of this submission as a second-round candidate,
a third-round candidate, a finalist, a member of the final portfolio, or any other desig-
nation provided by the commiĴee. The submiĴers understand that the commiĴee will
not comment on the algorithms, except that for each selected algorithm the commiĴee
will simply cite the previously published analyses that led to the selection of the algo-
rithm. The submiĴers understand that the selection of some algorithms is not a negative
comment regarding other algorithms, and that an excellent algorithm might fail to be
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selected simply because not enough analysis was available at the time of the commiĴee
decision. The submiĴers acknowledge that the commiĴee decisions reflect the collective
expert judgments of the commiĴee members and are not subject to appeal. The submit-
ters understand that if they disagree with published analyses then they are expected to
promptly and publicly respond to those analyses, not to wait for subsequent commiĴee
decisions. The submiĴers understand that this statement is required as a condition of
consideration of this submission by the CAESAR selection commiĴee.
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A Change log

A.1 From 1.0 to 1.1

Only Section 4.3 (“Features”) changed to include a brief comparison with AES-GCM.

A.2 From 1.1 to 1.2

The main change is the correction of the expressions for the advantage of forging
ciphertext-tag pairs in two theorems.

In both cases a term 2−t that was there before has been replaced by S
2t , with t is the

tag length and S the number of submiĴed tags. This term expresses the probability of
tag forging by pure chance, in the former case in a single aĴempt and in the laĴer case
in S aĴempts. In the new expression we assume the adversary gets one forgery aĴempt
for each submiĴed tag, while the old expression carried the implication that only a single
tag forging aĴempt is considered. We thank Bart Mennink for bringing this error to our
aĴention.

We also added a section with a reference to the available implementations.

A.3 From 1.2 to 2.0

The mode underlying KђѦюј has been completely re-factored and so has the document.
KђѦюј remains an authenticated encryption scheme supporting sessions, based on 12-
round Kђѐѐюј-p permutations and the named instances still have security strength 128
bits. We turnedKђѦюј into a parameterized authenticated encryption scheme, supporting
a wide range of parameters. The named instances, to which we added one named LѢћюџ
KђѦюј, are defined by fixing parameters in the general KђѦюј scheme.

A.4 From 2.0 to 2.1

We added Figures 1–3 in the original text, and the new Section 1.7 with further illustra-
tions and examples (Figures 4–12).

We added Section 2.6 on implementations.
No change has been made to any of the algorithms. The Motorist mode, the KђѦюј

functions and their security claims remain unchanged.
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