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1 Specification

SILC (which stands for SImple Lightweight CFB, and is pronounced as “silk”) is a blockcipher mode of
operation for authenticated encryption with associated data (AEAD), which is also called an authenti-
cated cipher. SILC is built upon CLOC [10,11,12], and the design of SILC aims at optimizing the hardware
implementation cost of CLOC. SILC also maintains the provable security based on the pseudorandomness
of the underlying blockcipher. SILC is suitable for use within constrained hardware devices.

1.1 Notation

We use the same notation as in [12], but we repeat the notation for completeness.

Let {0, 1}∗ be the set of all finite bit strings, including the empty string ε. For an integer ℓ ≥ 0,
let {0, 1}ℓ be the set of all bit strings of ℓ bits. We let B = {0, 1}8 be the set of bytes (8-bit strings),
and B∗ be the set of all finite byte strings. For X,Y ∈ {0, 1}∗, we write X ∥Y , (X,Y ), or XY to
denote their concatenation. For ℓ ≥ 0, we write 0ℓ ∈ {0, 1}ℓ to denote the bit string that consists of
ℓ zeros, and 1ℓ ∈ {0, 1}ℓ to denote the bit string that consists of ℓ ones. For X ∈ {0, 1}∗, |X| is its
length in bits, and for ℓ ≥ 1, |X|ℓ = ⌈|X|/ℓ⌉ is the length in ℓ-bit blocks. For X ∈ {0, 1}∗ and ℓ ≥ 0
such that |X| ≥ ℓ, msbℓ(X) is the most significant (the leftmost) ℓ bits of X. For instance we have
msb1(1100) = 1 and msb3(1100) = 110. For X ∈ {0, 1}∗ and ℓ ≥ 1, we write its partition into ℓ-bit

blocks as (X[1], . . . , X[x])
ℓ← X, which is defined as follows. If X = ε, then x = 1 and X[1]

ℓ← X, where
X[1] = ε. Otherwise X[1], . . . , X[x] ∈ {0, 1}∗ are unique bit strings such that X[1] ∥ · · · ∥X[x] = X,
|X[1]| = · · · = |X[x− 1]| = ℓ, and 1 ≤ |X[x]| ≤ ℓ.

In what follows, we fix a block length n and a blockcipher E : KE × {0, 1}n → {0, 1}n, where KE is a
non-empty set of keys. Let Perm(n) be the set of all permutations over {0, 1}n. We write EK ∈ Perm(n)
for the permutation specified by K ∈ KE , and C = EK(M) for the ciphertext of plaintext M ∈ {0, 1}n
under key K ∈ KE . Following the CAESAR call for submissions, we restrict all input and output variables
of SILC as byte-strings. Also we assume the big-endian format for all variables.

1.2 Algorithm and Parameters

We follow the description of CLOC [12].

SILC takes three parameters, a blockcipher E : KE ×{0, 1}n → {0, 1}n, a nonce length ℓN , and a tag
length τ , where ℓN and τ are in bits. Here, a nonce corresponds to a public message number specified
by the CAESAR call for submissions, and we may interchangeably use both names. SILC does not have
the secret message number, i.e. it is always assumed to be of length zero. We require 1 ≤ ℓN ≤ n− 9 and
1 ≤ τ ≤ n, and assume that ℓN/8 and τ/8 are integers⋆, and n ∈ {64, 128}. We write SILC[E, ℓN , τ ] for
SILC that is parameterized by E, ℓN , and τ , and we often omit the parameters if they are irrelevant or
they are clear from the context. SILC[E, ℓN , τ ] = (SILC-E , SILC-D) consists of the encryption algorithm
SILC-E and the decryption algorithm SILC-D.

SILC-E and SILC-D have the following syntax.{
SILC-E : KSILC ×NSILC ×ASILC ×MSILC → CT SILC

SILC-D : KSILC ×NSILC ×ASILC × CT SILC →MSILC ∪ {⊥}

KSILC = KE is the key space, which is identical to the key space of the underlying blockcipher, NSILC =
BℓN/8 is the nonce space, ASILC = B∗ is the associated data space, MSILC = B∗ is the plaintext space,
CT SILC = CSILC × TSILC is the ciphertext space, where CSILC = B∗ and TSILC = Bτ/8 is the tag space,
and ⊥ ̸∈ MSILC is the distinguished reject symbol. We write (C, T ) ← SILC-EK(N,A,M) and M ←
SILC-DK(N,A,C, T ) or ⊥ ← SILC-DK(N,A,C, T ). We make a restriction that the maximum lengths of
A, M , and C are all 2n/2 − 1 bytes.

⋆ In SILC v1, the requirement was 1 ≤ ℓN ≤ n− 1, and this was updated to handle param in SILC v2.
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Algorithm SILC-EK(N,A,M)

1. V ← HASHK(N,A)
2. C ← ENCK(V,M)
3. T ← PRFK(V,C)
4. return (C, T )

Algorithm SILC-DK(N,A,C, T )

1. V ← HASHK(N,A)
2. T ∗ ← PRFK(V,C)
3. if T ̸= T ∗ then return ⊥
4. M ← DECK(V,C)
5. return M

Fig. 1. Pseudocode of the encryption and the decryption algorithms of SILC

Algorithm HASHK(N,A)

1. SH[0]← EK(zpp(param ∥N))
2. if |A| = 0 then
3. V ← g(SH[0]⊕ Len(A)) // Len(A) = 0n

4. return V
5. (A[1], . . . , A[a])

n← A
6. for i← 1 to a− 1 do
7. SH[i]← EK(SH[i− 1]⊕A[i])
8. SH[a]← EK(SH[a− 1]⊕ zap(A[a]))
9. V ← g(SH[a]⊕ Len(A))

10. return V

Algorithm PRFK(V,C)

1. SP[0]← EK(g(V ))
2. if |C| = 0 then
3. U ← g(SP[0]⊕ Len(C)) // Len(C) = 0n

4. T ← msbτ (EK(U))
5. return T
6. (C[1], . . . , C[m])

n← C
7. for i← 1 to m− 1 do
8. SP[i]← EK(SP[i− 1]⊕ C[i])
9. SP[m]← EK(SP[m− 1]⊕ zap(C[m]))

10. U ← g(SP[m]⊕ Len(C))
11. T ← msbτ (EK(U))
12. return T

Algorithm ENCK(V,M)

1. if |M | = 0 then
2. C ← ε
3. return C
4. (M [1], . . . ,M [m])

n←M
5. SE[1]← EK(V )
6. for i← 1 to m− 1 do
7. C[i]← SE[i]⊕M [i]
8. SE[i+ 1]← EK(fix1(C[i]))
9. C[m]← msb|M [m]|(SE[m])⊕M [m]

10. C ← (C[1], . . . , C[m])
11. return C

Algorithm DECK(V,C)

1. if |C| = 0 then
2. M ← ε
3. return M
4. (C[1], . . . , C[m])

n← C
5. SD[1]← EK(V )
6. for i← 1 to m− 1 do
7. M [i]← SD[i]⊕ C[i]
8. SD[i+ 1]← EK(fix1(C[i]))
9. M [m]← msb|C[m]|(SD[m])⊕ C[m]

10. M ← (M [1], . . . ,M [m])
11. return M

Fig. 2. Subroutines used in the encryption and decryption algorithms of SILC

SILC-E and SILC-D are defined in Fig. 1. In these algorithms, we use four subroutines, HASH, PRF,
ENC, and DEC. They have the following syntax.

HASH : KSILC ×NSILC ×ASILC → {0, 1}n

PRF : KSILC × {0, 1}n × CSILC → TSILC
ENC : KSILC × {0, 1}n ×MSILC → CSILC
DEC : KSILC × {0, 1}n × CSILC →MSILC

These subroutines are defined in Fig. 2, and illustrated in Fig. 3, Fig. 4, and Fig. 5. We also present
equivalent figures in Fig. 6, Fig. 7, and Fig. 8. We note that ENC and DEC are the same as those in
CLOC [10]. In HASH, the nonce N is padded with param ∈ B which is an 8-bit constant that depends on
the parameters, E, ℓN , and τ . See Sect. 1.3 and Sect. 1.4 for the concrete values of param.

In the subroutines, we use the zero prepending function zpp : B∗ → B∗, the zero appending function
zap : B∗ → B∗, the bit-fixing function fix1 : B∗ → B∗, the tweak function g : {0, 1}n → {0, 1}n, and the
length encoding function Len : B∗ → {0, 1}n.

Both the zero prepending and appending functions are used to adjust the length of an input string
so that the total length becomes a non-negative multiple of n bits (the output is the empty string if and
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only if the input is the empty string). For X ∈ B∗, zpp(X) is defined as

zpp(X) =

{
X if |X| = ℓn for some ℓ ≥ 0,

0n−(|X| mod n) ∥X otherwise,

and zap(X) is defined as

zap(X) =

{
X if |X| = ℓn for some ℓ ≥ 0,

X ∥ 0n−(|X| mod n) otherwise.

In general, they are not invertible functions.
The bit-fixing function fix1 is used to fix the most significant bit of an input string to one. For X ∈ B∗,

fix1(X) is defined as fix1(X) = X ∨ 10|X|−1, where ∨ denotes the bit-wise OR operation.
The length encoding function Len : B∗ → {0, 1}n is used to encode the input length (in bytes) in HASH

and PRF. For X ∈ B∗, it is defined as Len(X) = strn(|X|8), where strn(|X|8) is the standard encoding of
|X|8 (the byte length of X) into an n-bit string. For example, when X = ε, we have Len(X) = 0n, and
when |X|8 = 5, we have Len(X) = 0n−4 ∥ 0101. As the maximum lengths of A, M , and C are all 2n/2− 1
bytes, the most significant n/2 bits of Len(X) in HASH and PRF are fixed to 0n/2.

The tweak function g : {0, 1}n → {0, 1}n is used in HASH and PRF. If n = 128, for X ∈ {0, 1}n, we
let (X[1], X[2], . . . , X[16])

n/16← X. Then g(X) is defined as

g(X) = (X[2], X[3], . . . , X[16], X[1, 2]),

where X[a, b] stands for X[a] ⊕X[b]. Similarly, if n = 64, we let (X[1], X[2], . . . , X[8])
n/8← X and define

g(X) as

g(X) = (X[2], X[3], . . . , X[8], X[1, 2]).

For both cases, g can be interpreted as one byte left shift with the rightmost output byte being the xor
of the leftmost two input bytes.

1.3 Parameter Spaces

As the CAESAR submission we specify the parameter spaces of SILC as follows.

– Blockcipher E: AES-128 (AES with 128-bit key), or present-80 (present with 80-bit key), or LED-80
(LED with 80-bit key).

– Nonce length ℓN : For AES-128, ℓN ∈ {64 bits (8 byte), 96 bits (12 bytes), 112 bits (14 bytes)}, and
for present-80 and LED-80, ℓN ∈ {32 bits (4 byte), 48 bits (6 bytes)}.

– Tag length τ : For AES-128, τ ∈ {32 bits (4 bytes), 64 bits (8 bytes), 96 bits (12 bytes), 128 bits (16
bytes)}, and for present-80 and LED-80, τ ∈ {32 bits (4 bytes), 48 bits (6 bytes), 64 bits (8 bytes)}.

present is a 64-bit blockcipher proposed by Bogdanov et al. at CHES 2007 [5], and LED is a 64-bit
blockcipher proposed by Guo et al. at CHES 2011 [9]. The specification of present is described in
Appendix A, and that of LED is described in Appendix B.

The choice of the parameter determines the value of param ∈ B which is concatenated to the nonce
N in HASH. The definition of param is given in Table 1.

1.4 Recommended Parameter Sets

We specify the recommended parameter sets as follows.

– Parameter set 1, aes128n12t8silcv2: E = AES-128, ℓN = 96 (12-byte nonce), τ = 64 (8-byte tag)
– Parameter set 2, aes128n8t8silcv2: E = AES-128, ℓN = 64 (8-byte nonce), τ = 64 (8-byte tag)
– Parameter set 3, present80n6t4silcv2: E = present-80, ℓN = 48 (6-byte nonce), τ = 32 (4-byte

tag)
– Parameter set 4, led80n6t4silcv2: E = LED-80, ℓN = 48 (6-byte nonce), τ = 32 (4-byte tag)

These are marked with the asterisk in Table 1.
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Table 1. Definition of param. ℓN and τ are written in bytes, and param is in hex. The asterisk indicates the
recommended parameter.

E ℓN τ param

* AES-128 12 8 0xc0

AES-128 12 12 0xc1

AES-128 12 16 0xc2

AES-128 12 4 0xc3

* AES-128 8 8 0xd0

AES-128 8 12 0xd1

AES-128 8 16 0xd2

AES-128 8 4 0xd3

AES-128 14 8 0xe0

AES-128 14 12 0xe1

AES-128 14 16 0xe2

AES-128 14 4 0xe3

E ℓN τ param

* present-80 6 4 0xc4

present-80 6 6 0xc5

present-80 6 8 0xc6

present-80 4 4 0xd4

present-80 4 6 0xd5

present-80 4 8 0xd6

* LED-80 6 4 0xc8

LED-80 6 6 0xc9

LED-80 6 8 0xca

LED-80 4 4 0xd8

LED-80 4 6 0xd9

LED-80 4 8 0xda

Table 2. Security goal for confidentiality (privacy)

Parameter set aes128n12t8silcv2 aes128n8t8silcv2 present80n6t4silcv2 led80n6t4silcv2

Data 64 64 32 32
Time 128 128 80 80

2 Security Goals

The security goal of SILC is to provide the provable security in terms of confidentiality (or privacy)
of plaintexts under nonce-respecting adversaries, and integrity (or authenticity) of plaintext, associated
data, and nonce (public message number) under nonce-reusing adversaries. These goals are the same as
CLOC. We note that, as CLOC, SILC has no secret message number.

SILC has provable security guarantees both for confidentiality and integrity, up to the standard
birthday bound of the block length of the underlying blockcipher, based on the assumption that the
blockcipher is a pseudorandom permutation (PRP). The attack models are given in Sect. 3, which are
the same as in CLOC [12].

Attack Workload. SILC has provable security bounds up to the standard birthday bound, based on the
pseudorandomness of the underlying blockcipher. Table 2 and Table 3 are obtained from these bounds.
The variables in the tables denote the required workload of an adversary to break the cipher, in logarithm
base 2. If one of the variables reaches the suggested number, then there is no security guarantee anymore,
and the cipher can be broken. In Table 2, Data denotes σpriv of our privacy theorem in Theorem 1, and
this roughly suggests the number of data blocks that the adversary obtains. In Table 3, Data denotes
σauth and Verify denotes q′ of our authenticity theorem in Theorem 2, where σauth roughly suggests the
number of data blocks that the adversary obtains, and q′ denotes the number of decryption queries. In
both tables, Time denotes the time complexity, which we assume to be equal to the bit length of the key
of the underlying blockcipher. We note that a small constant is neglected in these tables.

As in CLOC, the nonce cannot be repeated to maintain the privacy. However, the privacy of SILC
is kept as long as the uniqueness of (A,N), a pair of associated data and a nonce, is maintained for all
encryption queries. We note that the authenticity holds in this setting as well, since it is maintained even
if the nonce is reused.

On the Use of 64-Bit Blockcipher. We emphasize that the use of 64-bit blockciphers, present or LED,
is not for general purpose applications, since the birthday bound for the block length of 64 bits is
usually unacceptable for conventional data transmission, as pointed out by McGrew [18]. However, there
are various practical applications that benefit from the low implementation cost even with the limited
security guarantee. See [12, Sect. 2] for such examples.
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Table 3. Security goal for integrity (authenticity)

Parameter set aes128n12t8silcv2 aes128n8t8silcv2 present80n6t4silcv2 led80n6t4silcv2

Data 64 64 32 32
Verify 64 64 32 32
Time 128 128 80 80

3 Security Analysis

In this section, we define the security notions of a blockcipher and SILC, which are the same as in [12,
Sect. 3], and present our security theorems.

PRP Notion. We assume that the blockcipher E : KE×{0, 1}n → {0, 1}n is a pseudorandom permutation,

or a PRP [16]. We say that P is a random permutation if P
$← Perm(n), and define

Advprp
E (A) def

= Pr
[
AEK(·) ⇒ 1

]
− Pr

[
AP (·) ⇒ 1

]
,

where the first probability is taken over K
$← KE and the randomness of A, and the last is over P

$←
Perm(n) and A. We write SILC[Perm(n), ℓN , τ ] for SILC that uses P as EK , and the encryption and
decryption algorithms are written as SILC-EP and SILC-DP .

Privacy Notion. We define the privacy notion for SILC[E, ℓN , τ ] = (SILC-E , SILC-D). This notion cap-
tures the indistinguishably of a nonce-respecting adversary in a chosen plaintext attack setting. We con-
sider an adversary A that has access to the SILC encryption oracle, or a random-bits oracle. The encryp-
tion oracle takes (N,A,M) ∈ NSILC×ASILC×MSILC as input and returns (C, T )← SILC-EK(N,A,M).
The random-bits oracle, $-oracle, takes (N,A,M) ∈ NSILC × ASILC ×MSILC as input and returns a

random string (C, T )
$← {0, 1}|M |+τ . We define the privacy advantage as

Advpriv
SILC[E,ℓN ,τ ](A)

def
= Pr

[
ASILC-EK(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·) ⇒ 1

]
,

where the first probability is taken over K
$← KSILC and the randomness of A, and the last is over the

random-bits oracle and A. We assume that A in the privacy game is nonce-respecting, that is, A does
not make two queries with the same nonce.

Privacy Theorem. Let A be an adversary that makes q queries, and suppose that the queries are
(N1, A1,M1), . . . , (Nq, Aq,Mq). Then we define the total associated data length as a1 + · · ·+ aq, and the
total plaintext length as m1 + · · · + mq, where (Ai[1], . . . , Ai[ai])

n← Ai and (Mi[1], . . . ,Mi[mi])
n← Mi.

We have the following information theoretic result.

Theorem 1. Let Perm(n), ℓN , and τ be the parameters of SILC. Let A be an adversary that makes at
most q queries, where the total associated data length is at most σA, and the total plaintext length is at
most σM . Then we have Advpriv

SILC[Perm(n),ℓN ,τ ](A) ≤ 5σ2
priv/2

n, where σpriv = 3q + σA + 2σM .

A complete proof is presented in Appendix C. If we use a blockcipher E, which is secure in the sense of
the PRP notion, instead of Perm(n), then the corresponding complexity theoretic result can be shown
by a standard argument. See e.g. [1]. We note that the privacy of SILC is broken if the nonce is reused,
but as in CLOC, it remains secure if the uniqueness of (A,N) is maintained.

Authenticity Notion. We next define the authenticity notion, which captures the unforgeability of an
adversary in a chosen ciphertext attack setting. We consider a strong adversary that can repeat the
same nonce multiple times. Let A be an adversary that has access to the SILC encryption oracle and
the SILC decryption oracle. The encryption oracle is defined as above. The decryption oracle takes
(N,A,C, T ) ∈ NSILC × ASILC × CSILC × TSILC as input and returns M ← SILC-DK(N,A,C, T ) or
⊥ ← SILC-DK(N,A,C, T ). The authenticity advantage is defined as

Advauth
SILC[E,ℓN ,τ ](A)

def
= Pr

[
ASILC-EK(·,·,·),SILC-DK(·,·,·,·) forges

]
,
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where the probability is taken over K
$← KSILC and the randomness of A, and the adversary forges

if the decryption oracle returns a bit string (other than ⊥) for a query (N,A,C, T ), but (C, T ) was
not previously returned to A from the encryption oracle for a query (N,A,M). The adversary A in
the authenticity game is not necessarily nonce-respecting, and A can make two or more queries with
the same nonce. Specifically, A can repeat using the same nonce for encryption queries, a nonce used for
encryption queries can be used for decryption queries and vice-versa, and the same nonce can be repeated
for decryption queries. Without loss of generality, we assume that A does not make trivial queries, i.e.,
if the encryption oracle returns (C, T ) for a query (N,A,M), then A does not make a query (N,A,C, T )
to the decryption oracle, and A does not repeat a query.

Authenticity Theorem. Let A be an adversary that makes q encryption queries and q′ decryption queries.
Let (N1, A1,M1), . . . , (Nq, Aq,Mq) be the encryption queries, and (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
q′ , A

′
q′ , C

′
q′ , T

′
q′)

be the decryption queries. Then we define the total associated data length in encryption queries as
a1 + · · ·+ aq, the total plaintext length as m1 + · · ·+mq, the total associated data length in decryption
queries as a′1+ · · ·+a′q′ , and the total ciphertext length as m′

1+ · · ·+m′
q′ , where (Ai[1], . . . , Ai[ai])

n← Ai,

(Mi[1], . . . ,Mi[mi])
n←Mi, (A

′
i[1], . . . , A

′
i[a

′
i])

n← A′
i, and (C ′

i[1], . . . , C
′
i[m

′
i])

n← C ′
i. We have the following

information theoretic result.

Theorem 2. Let Perm(n), ℓN , and τ be the parameters of SILC. Let A be an adversary that makes
at most q encryption queries and at most q′ decryption queries, where the total associated data length
in encryption queries is at most σA, the total plaintext length is at most σM , the total associated data
length in decryption queries is at most σA′ , and the total ciphertext length is at most σC′ . Then we have
Advauth

SILC[Perm(n),ℓN ,τ ](A) ≤ 5σ2
auth/2

n + q′/2τ , where σauth = 3q + σA + 2σM + 3q′ + σA′ + σC′ .

A complete proof is presented in Appendix C. As in the privacy case, if we use a blockcipher E secure in
the sense of the PRP notion, then we obtain the corresponding complexity theoretic result by a standard
argument in, e.g., [1].

4 Features

SILC has the following features.

1. It uses only the encryption of the blockcipher both for encryption and decryption.

2. It carefully avoids hardware-unfriendly operations as much as possible, e.g., conditional operation
branching, which requires multiplexers in hardware, and dynamic change of data shift amount.

3. It makes ⌈|N |/n⌉+ ⌈|A|/n⌉+ 2⌈|M |/n⌉+ 2 blockcipher calls for a nonce N , associated data A, and
a plaintext M . No precomputation other than the blockcipher key scheduling is needed. As a result,
no extra hardware register for storing the precomputed result is necessary. We note that in SILC,
1 ≤ |N | ≤ n− 1 holds (hence we always have ⌈|N |/n⌉ = 1).

4. The memory cost other than the blockcipher is low. It works with two state blocks (i.e. 2n bits) to
store chaining blocks for encryption and authentication, plus a counter for storing the message length.

5. Both encryption and decryption can be processed in an online manner.

6. For security, the privacy and authenticity are proved based on the PRP assumption of the blockci-
pher, assuming standard nonce-respecting adversaries. Moreover, the authenticity is proved with even
stronger, nonce-reusing adversaries.

The first, second, and fourth features imply SILC’s suitability for small hardware. SILC essentially
consists a blockcipher encryption function EK and other functions, zpp, zap, fix1, Len, and g. These
functions are chosen by taking the hardware efficiency into account. For instance the 10∗ padding function
is commonly used in many blockcipher modes, but due to the operation branch depending on the input
length, it imposes non-negligible increase in circuit gates compared with zpp or zap. At the cost of one
additional blockcipher call for Len, the padding is significantly simplified.

The last feature implies that SILC provides standard security as a nonce-based AEAD, and in addition
a level of security (i.e. authenticity only) even when the nonce is reused.
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Advantages over AES-GCM. Compared with AES-GCM [19], the hardware implementation of SILC with
AES can be smaller, since we avoid using a full Galois-Field (GF) multiplier. In hardware, AES-GCM is
generally fast, however, a fast GF multiplier requires a rather large number of gates, in addition to those
needed for the AES encryption function. While SILC with AES can be efficiently implemented, it is also
fast if AES is fast. For SILC with present or LED, we expect even smaller implementations with reduced
power consumption, at the cost of reduced security which is reasonable for constrained hardware. The
parameter set with present or LED would be beneficial to tiny devices, such as RFID or CPLD.

With respect to the security, SILC inherits the advantages of CLOC over GCM. That is, the provable
security bound of SILC for authentication is better than that of GCM presented in [15]. In GCM, the
existence of weak keys was pointed out [21], while weak keys are not known in SILC. Also, SILC provides
some level of security even if the nonce is reused.

Justifications of Parameter Sets. For the 128-bit blockcipher, we select AES for its excellent performance
and extensively studied security. For the 64-bit blockcipher, we select present and LED. Both ciphers
can be implemented with small gate size, and in particular, present is selected for its high throughput,
and LED is selected for its high security margin against various cryptanalysis.

For aes128n12t8silcv2, we select ℓN = 96 from the current trend on the length of the nonce, and
this is suitable, for instance, if a part of the nonce is randomly chosen and the other part consists of a
counter. For aes128n8t8silcv2, we select ℓN = 64 considering the data overhead, and this is suitable for
applications where the nonce consists of a counter. For present80n6t4silcv2 and led80n6t4silcv2, we
select ℓN = 48 by taking the half of 96 in aes128n12t8silcv2. For all cases, the tag length was chosen
by taking the balance between the security and the data overhead.

Limitations. We list several limitations of SILC. SILC is designed to reduce the hardware gates of CLOC
as much as possible, while maintaining the provable security based on the pseudorandomness of the
underlying blockcipher, at the cost of constant increase in the number of blockcipher calls. Also, it does
not handle static associated data efficiently, as we first process a nonce and then associated data. We
chose this order as the small hardware is the main target of SILC, and hence it is unlikely that we keep the
intermediate state block to improve the efficiency. SILC also inherits limitations of CLOC. For long input
data, SILC is not efficient as it needs two blockcipher calls per one plaintext block. The nonce length
is fixed, which may be problematic in some applications. The four functions used in SILC, HASH, ENC,
DEC, and HASH, are all sequential, but the blockcipher calls in ENC and PRF can be done in parallel.
We also note that the parallelization is always possible for multiple messages [7,6].

5 Design Rationale

The designers have not hidden any weaknesses in this cipher.
Our goal is to provide an AEAD particularly efficient for hardware, requiring a small number of gates

other than the blockcipher implementation, that is, a small implementation overhead. For achieving
hardware efficiency, we set our design strategy as follows.

– Construct data flow with minimized kinds/amount of functions, minimized flow branching and merg-
ing, which implies extra multiplexers and registers, and the use of same ordering of functions in
different steps, which makes hardware sharing easy.

– Avoid functions not suitable to hardware, such as dynamic data shifting, which requires a barrel
shifter, and integer operations etc.

– Avoid to use many pre-computed values, which consumes extra registers.

SILC is built upon CLOC, and inherits the overall structure. Basically, SILC is a combination of
CFB and CBC MAC, where CBC MAC is called twice for processing associated data and a ciphertext,
and CFB is called once to generate a ciphertext. In order to keep implementation overhead as small as
possible, we choose CFB, since CBC needs the decryption of the blockcipher, and CTR or OFB requires
additional state for counter or intermediate output block. Since a naive combination of CFB and CBC
MAC does not work, and we do not want to use precomputed blockcipher outputs such as L = EK(0n)
used in EAX, as this requires additional memory state, we use fix1 and zpp functions to logically separate
CFB and CBC MAC. Here, instead of zpp, any function that forces the first input bit to CBC MAC
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to zero would work, however, we choose zpp for its simplicity in hardware. This loses the capability of
efficient handling of static associated data, but we think this is the right treading-off between the size
and simplicity, considering our target (e.g. it is unlikely for small hardware to have a memory block and
a control logic for caching static associated data).

For the tweak function, as in CLOC, we avoid using GF doubling (a multiplication by two over
GF(2n)), a common operation for many blockcipher modes [3,23]. Instead, we have adopted the g function
to reduce the hardware logic size. When implemented as combinational circuits, the g function is much
simpler than the GF doubling because it consists of a static amount of shifting, which consumes no
hardware resources, and a minimum amount of xors. The role of the g function is to tweak an input value
of the blockcipher, and a similar technique can be found in the context of MAC [20,24]. There is only one
tweak function in SILC, which is different from CLOC [10] that has five tweak functions. This means the
hardware implementation of SILC does not need many selectors. The tweak function is selected so that
it satisfies the following conditions, which is needed for provable security. First, it is linear with respect
to xor (i.e. g(X ⊕X ′) = g(X) ⊕ g(X ′) holds for all X,X ′ ∈ {0, 1}n). Next, it is invertible over {0, 1}n.
Finally, let K ∈ {0, 1}n be uniform over {0, 1}n. Then, we require that the following functions are (close
to) uniform over {0, 1}n. 

g(K)

g(K)⊕K

g(g(K))

g(g(K))⊕K

g(g(K))⊕ g(K)

It can be easily confirmed that our g function fulfills these conditions for both n = 64 and n = 128 by
computing the corresponding matrix ranks over GF(2) as was done in [10].

At the end of HASH and PRF, we use a simple padding function with additional length encoding.
Though this always requires one additional blockcipher call compared to popular 10∗ padding used by
many blockcipher modes, the former is much more efficient in terms of the gate size. We remark that our
padding scheme here is similar to the one used in GCM.

Selection of Blockciphers. For 128-bit block size we choose AES as the underlying blockcipher, because
the security of AES has been extensively studied. For 64-bit block size we choose present and LED as
the underlying blockcipher. As explained in Sect. 4, both ciphers are chosen for their small hardware size,
and we think present is useful when the application requires high throughput, and LED is useful when
long-term security is required, where LED’s high security margin will help.

6 Intellectual Property

We claim no intellectual property (IP) rights associated to SILC, and are unaware of any relevant IP held
by others. We note that the statement does not cover the internal blockcipher. Nanyang Technological
University has a patent related to LED blockcipher: WO2012154129 A1.

If any of this information changes, the submitter will promptly (and within at most one month)
announce these changes on the crypto-competitions mailing list.

7 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee regarding the selec-
tion or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist,
a member of the final portfolio, or any other designation provided by the committee. The submitters
understand that the committee will not comment on the algorithms, except that for each selected algo-
rithm the committee will simply cite the previously published analyses that led to the selection of the
algorithm. The submitters understand that the selection of some algorithms is not a negative comment
regarding other algorithms, and that an excellent algorithm might fail to be selected simply because not
enough analysis was available at the time of the committee decision. The submitters acknowledge that
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the committee decisions reflect the collective expert judgments of the committee members and are not
subject to appeal. The submitters understand that if they disagree with published analyses then they
are expected to promptly and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitters understand that this statement is required as a condition of consideration of
this submission by the CAESAR selection committee.
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A present [5]

present is a blockcipher with 80-bit or 128-bit keys, and employs the SP-network. We describe the 80-bit
key version, which we write present-80, using the materials in [5].

It consists of 31 rounds, and each of the 31 rounds consists of an xor operation of a round key Ki

for 1 ≤ i ≤ 32, where K32 is used for post-whitening, a linear bitwise permutation, and a non-linear
substitution layer. The non-linear layer uses a single 4-bit S-box S which is applied 16 times in parallel
in each round. The cipher is described in the following pseudocode.

1. generateRoundKeys()

2. for i← 1 to 31 do

3. addRoundKey(state,Ki)

4. sBoxLayer(state)

5. pLayer(state)

6. end for

7. addRoundKey(state,K32)

Throughout this section, we number bits from zero with bit zero on the right of a block or word. Each
stage is specified below.

addRoundKey. Given round key Ki = κi
63 . . . κ

i
0 for 1 ≤ i ≤ 32 and current state b63 . . . b0, addRound-

Key consists of the operation for 0 ≤ j ≤ 63,

bj → bj ⊕ κi
j .

sBoxlayer. The S-box used in present is a 4-bit to 4-bit S-box S : {0, 1}4 → {0, 1}4. The following
table shows the input and output of the S-box in hexadecimal notation.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

For sBoxLayer the current state b63 . . . b0 is considered as sixteen 4-bit words w15 . . . w0 where wi =
b4∗i+3 ∥ b4∗i+2 ∥ b4∗i+1 ∥ b4∗i for 0 ≤ i ≤ 15 and the output nibble S[wi] provides the update state values
in the obvious way.

pLayer. The bit permutation used in present is given by the following table. Bit i of state is moved
to bit position P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63
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The key schedule. present can take keys of either 80 or 128 bits. In the 80-bit key version, the
user-supplied key is stored in a key register K and represented as k79k78 . . . k0. At round i the 64-bit
round key Ki = κ63κ62 . . . κ0 consists of the 64 leftmost bits of the current contents of register K. Thus
at round i we have that:

Ki = κ63κ62 . . . κ0 = k79k78 . . . k16.

After extracting the round key Ki, the key register K = k79k78 . . . k0 is updated as follows.

1. [k79k78 . . . k1k0] = [k18k17 . . . k20k19]
2. [k79k78k77k76] = S[k79k78k77k76]
3. [k19k18k17k16k15] = [k19k18k17k16k15]⊕ round counter

Thus, the key register is rotated by 61 bit positions to the left, the left-most four bits are passed through
the present S-box, and the round counter value i is xor’ed with bits k19k18k17k16k15 of K with the
least significant bit of round counter on the right.

B LED [9]

LED [9] is a 64-bit lightweight blockcipher family designed by Guo et al. in 2011, consists of mainly two
variants of 64-bit and 128-bit key, denoted as LED-64 and LED-128, respectively. The 64-bit plaintext m
is split into 16 4-bit nibbles m0∥m1∥ . . . ∥m15, and can be represented in a square array as:

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15


LED is AES like, and every round function consists of 4 operations: SubByte, ShiftRow, MixColumn,
and AddConstant.

SubByte applies the present S-box, as already described in Appendix A, to every nibble, i.e., mi =
S(mi) for i = 0, . . . , 15.

ShiftRow shifts the i-th row to the left by i positions for i = 0, . . . , 3, and the resulted matrix becomes
m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

←


m0 m1 m2 m3

m5 m6 m7 m4

m10 m11 m8 m9

m15 m12 m13 m14


MixColumn applies Galois-Field multiplication, with irreducible polynomial f(x) = x4+x+1, of MDS

matrix to each column. The MDS matrix is defined as

M = (A)4 =


0 1 0 0

0 0 1 0

0 0 0 1

4 1 2 2


4

=


4 1 2 2

8 6 5 6

B E A 9

2 2 F B

 .

Then for i = 0, 1, 2, 3, 
mi+0

mi+4

mi+8

mi+12

 = M ×


mi+0

mi+4

mi+8

mi+12

 .

AddConstant adds a round-dependent value rc and key-size dependent value ks (ks is an 8-bit repre-
sentation of the master key size) to the state. The constant format is as follows.

0⊕ (ks7∥ks6∥ks5∥ks4) (rc5∥rc4∥rc3) 0 0
1⊕ (ks7∥ks6∥ks5∥ks4) (rc2∥rc1∥rc0) 0 0
2⊕ (ks3∥ks2∥ks1∥ks0) (rc5∥rc4∥rc3) 0 0
3⊕ (ks3∥ks2∥ks1∥ks0) (rc2∥rc1∥rc0) 0 0


The values of (rc5, rc4, rc3, rc2, rc1, rc0) for rounds r = 1, . . . , 48 are shown below:

13



Rounds Constants

1–24 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E,1D,3A,35,2B,16,2C,18,30

25–48 21,02,05,0B,17,2E,1C,38,31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

Every 4 rounds are then grouped together to form a Step, and the key material is added in every
step. In this proposal, we make use of LED-80, which follows LED-128. The 80-bit key is padded with
‘0’s and then split into two 64-bit subkeys K1 and K2 (note K1 and K2 can be encoded in the same
way as for plaintext), which are then added into the state alternatively in every one of the 12 steps,
as shown in Fig. 9.

.

.one step

.P .4 rounds

.K1

.4 rounds

.K2

.4 rounds

.K1 .K2

.4 rounds

.K2 .K1

.C

Fig. 9. Encryption of LED-80

C Security Proofs of SILC

We present a security proof of SILC. We note that the proof is similar to that of CLOC in [11]. We also
note that the proof is presented using the specification of SILC v1 in [14]. This is because Theorem 1
and Theorem 2 hold both for SILC v1 and SILC v2, and the latter can be considered as the special case
of SILC v1 by considering param ∥N as a nonce N in SILC v1.

PRP/PRF Switching. We first replace P in SILC[Perm(n), ℓN , τ ] with a random function R
$← Rand(n).

We then use the PRP/PRF switching lemma [2] to obtain

Advpriv
SILC[Perm(n),ℓN ,τ ](A) ≤ Advpriv

SILC[Rand(n),ℓN ,τ ](A) +
0.5σ2

priv

2n
. (1)

To see this, we observe that for a query (Ni, Ai,Mi), we need ⌈|Ni|/n⌉ + ⌈|Ai|/n⌉ + 2⌈|Mi|/n⌉ + 2 ≤
3+ai+2mi calls of P in SILC-EP , and we have

∑
1≤i≤q(3+ai+2mi) ≤ 3q+σA+2σM = σpriv. We note

that we have ⌈|Ni|/n⌉ = 1, ⌈|Ai|/n⌉ ≤ ai, and ⌈|Mi|/n⌉ ≤ mi. For the authenticity notion, without loss
of generality, we assume that the decryption oracle, if A succeeds in forgery, returns a bit 1 instead of
the plaintext since the returned value has no effect on the success probability of A. Then for a decryption
query (N ′

j , A
′
j , C

′
j , T

′
j), SILC-DP makes ⌈|N ′

j |/n⌉+ ⌈|A′
j |/n⌉+ ⌈|C ′

j |/n⌉+2 ≤ 3+ a′j +m′
j calls of P , and

from
∑

1≤i≤q(3+ai+2mi)+
∑

1≤j≤q′(3+a′j +m′
j) ≤ 3q+σA+2σM +3q′+σA′ +σC′ = σauth, we obtain

Advauth
SILC[Perm(n),ℓN ,τ ](A) ≤ Advauth

SILC[Rand(n),ℓN ,τ ](A) +
0.5σ2

auth

2n
. (2)

In what follows, we evaluate Advpriv
SILC[Rand(n),ℓN ,τ ](A) and Advauth

SILC[Rand(n),ℓN ,τ ](A).

Definition of Q1, . . . , Q7. Let R
$← Rand(n) be a random function, and K1,K2

$← {0, 1}n be two
independent and uniform random n-bit strings. We define seven functions Q1, . . . , Q7 : {0, 1}n → {0, 1}n
from R, K1, and K2 in Fig 10, and they are illustrated in Fig. 11. We write Q = (Q1, . . . , Q7).
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Q1(X) = R(X)⊕K1

Q2(X) = R(X ⊕K1)⊕K1

Q3(X) = R(g(X ⊕K1))

Q4(X) = R(X)

Q5(X) = R(g(g(X ⊕K1)))⊕K2

Q6(X) = R(X ⊕K2)⊕K2

Q7(X) = R(g(X ⊕K2))

Fig. 10. Definition of Q1, . . . , Q7

g
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X
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X
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g
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Q5(X)
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R

K2

K2

Q6(X)
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Fig. 11. Q1, . . . , Q7

Algorithm SILC2-EQ(N,A,M)

1. if |M | = 0 then
2. C ← ε
3. else // |M | ≥ 1
4. SE[1]← HASH2Q1,Q2,Q3(N,A)
5. C ← ENC2Q4(SE[1],M)
6. T ← PRF2Q1,Q2,Q5,Q6,Q7(N,A,C)
7. return (C, T )

Algorithm SILC2-DQ(N,A,C, T )

1. T ∗ ← PRF2Q1,Q2,Q5,Q6,Q7(N,A,C)
2. if T ̸= T ∗ then return ⊥
3. return 1

Fig. 12. Pseudocode of the encryption and the decryption algorithms of SILC2

Algorithm HASH2Q1,Q2,Q3(N,A)

1. SH[0]← Q1(zpp(N))
2. if |A| = 0 then
3. SE[1]← Q3(SH[0]⊕ Len(A)) // Len(A) = 0n

4. return SE[1]
5. (A[1], . . . , A[a])

n← A
6. for i← 1 to a− 1 do // only for a ≥ 2
7. SH[i]← Q2(SH[i− 1]⊕A[i])
8. SH[a]← Q2(SH[a− 1]⊕ zap(A[a]))
9. SE[1]← Q3(SH[a]⊕ Len(A))

10. return SE[1]

Algorithm ENC2Q4(SE[1],M) // |M | ≥ 1

1. (M [1], . . . ,M [m])
n←M

2. for i← 1 to m− 1 do // only for m ≥ 2
3. C[i]← SE[i]⊕M [i]
4. SE[i+ 1]← Q4(fix1(C[i]))
5. C[m]← msb|M [m]|(SE[m])⊕M [m]
6. C ← (C[1], . . . , C[m])
7. return C

Algorithm PRF2Q1,Q2,Q5,Q6,Q7(N,A,C)

1. SP[0]← HASH2′Q1,Q2,Q5
(N,A)

2. T ← PRF2′Q6,Q7
(SP[0], C)

3. return T

Algorithm HASH2′Q1,Q2,Q5
(N,A)

1. SH[0]← Q1(zpp(N))
2. if |A| = 0 then
3. SP[0]← Q5(SH[0]⊕ Len(A)) // Len(A) = 0n

4. return SP[0]
5. (A[1], . . . , A[a])

n← A
6. for i← 1 to a− 1 do // only for a ≥ 2
7. SH[i]← Q2(SH[i− 1]⊕A[i])
8. SH[a]← Q2(SH[a− 1]⊕ zap(A[a]))
9. SP[0]← Q5(SH[a]⊕ Len(A))

10. return SP[0]

Algorithm PRF2′Q6,Q7
(SP[0], C)

1. if |C| = 0 then
2. SP[1]← Q7(SP[0]⊕ Len(C)) // Len(C) = 0n

3. T ← msbτ (SP[1])
4. return T
5. (C[1], . . . , C[m])

n← C
6. for i← 1 to m− 1 do // only for m ≥ 2
7. SP[i]← Q6(SP[i− 1]⊕ C[i])
8. SP[m]← Q6(SP[m− 1]⊕ zap(C[m]))
9. SP[m+ 1]← Q7(SP[m]⊕ Len(C))

10. T ← msbτ (SP[m+ 1])
11. return T

Fig. 13. Subroutines used in the encryption and decryption algorithms of SILC2

Definition of SILC2. We next present a definition of SILC2[ℓN , τ ], which is the same algorithm as
SILC[Rand(n), ℓN , τ ], but is represented in a different way. SILC2[ℓN , τ ] is based on Q, and the en-
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Fig. 14. SE[1]← HASH2Q1,Q2,Q3(N,A) for |A| = 0 (left) and |A| ≥ 1 (right). We note that Len(A) = 0n holds in
the left figure.
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Fig. 15. SP[0]← HASH2′Q1,Q2,Q5
(N,A) for |A| = 0 (left) and |A| ≥ 1 (right). This function is used as a subroutine

in PRF2, together with PRF2′, to generate a tag T . Len(A) = 0n holds in the left figure.
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Fig. 16. C ← ENC2Q4(SE[1],M) for |M | ≥ 1
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Fig. 17. PRF2′Q6,Q7
(SP[0], C) for |C| = 0 (left) and |C| ≥ 1 (right). PRF2′ is used as a subroutine in PRF2,

together with HASH2′, to generate a tag T . Len(C) = 0n holds in the left figure.
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cryption algorithm SILC2-E and the decryption algorithm SILC2-D are presented in Fig. 12, and the
subroutines are presented in Fig. 13. We also show figures of subroutines HASH2, HASH2′, ENC2, and
PRF2 used in these algorithms in Fig. 14, Fig. 15, Fig. 16, and Fig. 17. We write SILC2-EQ and SILC2-DQ

as they are based on Q = (Q1, . . . , Q7), but we note that SILC2-E and SILC2-D take R,K1, and K2 as
a key.

Let us describe how SILC2 works.

– HASH2 takes N and A as input to output R(V ) of SILC (instead of V ), which is subsequently used
to encrypt the first plaintext block M [1].

– Then ENC2 takes the output from HASH2 and M as input to output a ciphertext C.

– Finally we compute a tag T with PRF2 from N , A, and C, which internally uses HASH2′ and PRF2′.
HASH2′ outputs SP[0] from N and A by repeating the bulk of the computation which was already
done in HASH2. We note that SP[0] in SILC2 corresponds to SP[0] ⊕ K2 in SILC, and the only
difference between HASH2 and HASH2′ is the functions used to process the last input block. Finally,
the output of HASH2′, SP[0], is used in PRF2′, together with C, to compute the tag T .

From the construction, we claim that SILC-ER and SILC2-EQ are exactly the same algorithms, and
furthermore, SILC-DR and SILC2-DQ are the same algorithms, since the random strings K1 and K2 are
all canceled. We have {

Advpriv
SILC[Rand(n),ℓN ,τ ](A) = Advpriv

SILC2[ℓN ,τ ](A),
Advauth

SILC[Rand(n),ℓN ,τ ](A) = Advauth
SILC2[ℓN ,τ ](A).

(3)

Indistinguishability of Q. Next, let F1, . . . , F7
$← Rand(n) be seven independent random functions, and

we write F = (F1, . . . , F7). We show that Q = (Q1, . . . , Q7) is indistinguishable from F = (F1, . . . , F7).
Let B be an adversary. We define its advantage of distinguishing between Q and F as

Advind
Q (B) def

= Pr
[
BQ1(·),...,Q7(·) ⇒ 1

]
− Pr

[
BF1(·),...,F7(·) ⇒ 1

]
,

where the first probability is taken over R
$← Rand(n), K1,K2

$← {0, 1}n, and the randomness of B, and
the last one is taken over F1, . . . , F7

$← Rand(n) and the randomness of B. The adversary makes queries
of the form (j,X) ∈ {1, . . . , 7} × {0, 1}n, and receives Qj(X) or Fj(X). We say that the adversary is
input-respecting if msb1(X) = 0 holds for all queries with j = 1, and msb1(X) = 1 holds for all queries
with j = 4. Without loss of generality, we assume that B does not repeat a query. We have the following
lemma.

Lemma 1. Let B be an input-respecting adversary that makes at most q queries. Then Advind
Q (B) ≤

0.5q2/2n.

A proof is in Appendix D.

Definition of SILC3. Next, we define the third version SILC3[ℓN , τ ] of SILC[Rand(n), ℓN , τ ]. It uses
F = (F1, . . . , F7), and the encryption algorithm SILC3-E and the decryption algorithm SILC3-D are
obtained from SILC2-E and SILC2-D by using F1, . . . , F7 instead of Q1, . . . , Q7. Therefore, SILC3-E and
SILC3-D take F = (F1, . . . , F7) as a key, and we write SILC3-EF and SILC3-DF . We write the subroutines
in SILC3-EF and SILC3-DF as HASH3, HASH3′, ENC3, PRF3, and PRF3′, instead of HASH2, HASH2′,
ENC2, PRF2, and PRF2′. Lemma 1 gives{

Advpriv
SILC2[ℓN ,τ ](A) ≤ Advpriv

SILC3[ℓN ,τ ](A) + 0.5σ2
priv/2

n,

Advauth
SILC2[ℓN ,τ ](A) ≤ Advauth

SILC3[ℓN ,τ ](A) + 0.5σ2
auth/2

n.
(4)

Otherwise, we can construct an input-respecting adversary B that contradicts Lemma 1.
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Algorithm SILC4-EHASH4,HASH4′,F4,F6,F7
(N,A,M)

1. if |M | = 0 then
2. C ← ε
3. else // |M | ≥ 1
4. SE[1]← HASH4(N,A)
5. C ← ENC4F4(SE[1],M)
6. T ← PRF4HASH4′,F6,F7

(N,A,C)
7. return (C, T )

Algorithm SILC4-DHASH4,HASH4′,F4,F6,F7
(N,A,C, T )

1. T ∗ ← PRF4HASH4′,F6,F7
(N,A,C)

2. if T ̸= T ∗ then return ⊥
3. return 1

Fig. 18. Pseudocode of the encryption and the decryption algorithms of SILC4

Algorithm ENC4F4(SE[1],M) // |M | ≥ 1

1. (M [1], . . . ,M [m])
n←M

2. for i← 1 to m− 1 do // only for m ≥ 2
3. C[i]← SE[i]⊕M [i]
4. SE[i+ 1]← F4(fix1(C[i]))
5. C[m]← msb|M [m]|(SE[m])⊕M [m]
6. C ← (C[1], . . . , C[m])
7. return C

Algorithm PRF4HASH4′,F6,F7
(N,A,C)

1. SP[0]← HASH4′(N,A)
2. T ← PRF4′F6,F7

(SP[0], C)
3. return T

Algorithm PRF4′F6,F7
(SP[0], C)

1. if |C| = 0 then
2. SP[1]← F7(SP[0]⊕ Len(C)) // Len(C) = 0n

3. T ← msbτ (SP[1])
4. return T
5. (C[1], . . . , C[m])

n← C
6. for i← 1 to m− 1 do // only for m ≥ 2
7. SP[i]← F6(SP[i− 1]⊕ C[i])
8. SP[m]← F6(SP[m− 1]⊕ zap(C[m]))
9. SP[m+ 1]← F7(SP[m]⊕ Len(C))

10. T ← msbτ (SP[m+ 1])
11. return T

Fig. 19. Subroutines used in the encryption and decryption algorithms of SILC4

Indistinguishability of (HASH3,HASH3′). Let HASH4 and HASH4′ be two independent random functions,
where HASH4,HASH4′ : NSILC × ASILC → {0, 1}n. Our next task is to show that (HASH3,HASH3′) is
indistinguishable from (HASH4,HASH4′). For an adversary B, we define Advind

HASH3,HASH3′(B) as

Advind
HASH3,HASH3′(B)

def
= Pr

[
BHASH3(·,·),HASH3′(·,·) ⇒ 1

]
− Pr

[
BHASH4(·,·),HASH4

′(·,·) ⇒ 1
]
,

where the first probability is taken over F1, F2, F3, F5, and the randomness of B, and the last is over
the randomness of HASH4, HASH4′, and B. The adversary makes queries of the form (j,N,A) ∈ {1, 2}×
NSILC×ASILC, and receives HASH3(N,A) or HASH4(N,A) if j = 1, and HASH3′(N,A) or HASH4′(N,A)
if j = 2. If B makes q queries and the queries are (j1, N1, A1), . . . , (jq, Nq, Aq), then we define the total
associated data length as a1 + · · · + aq, where (Ai[1], . . . , Ai[ai])

n← Ai. Without loss of generality, we
assume that B does not repeat a query, but the same nonce can be repeated across different queries. We
show the following lemma.

Lemma 2. Let B be an adversary that makes at most q queries, where the total associated data length
is at most σA. Then we have Advind

HASH3,HASH3′(B) ≤ 0.5q2/2n + (q + σA)
2/2n.

A proof is in Appendix E.

Definition of SILC4. Next, we define the fourth version SILC4[ℓN , τ ] of SILC[Rand(n), ℓN , τ ]. The encryp-
tion algorithm SILC4-E and the decryption algorithm SILC4-D are obtained from SILC3-E and SILC3-D
by replacing HASH3 and HASH3′ with the random functions HASH4 and HASH4′, respectively. Therefore,
SILC4-E and SILC4-D take HASH4, HASH4′, F4, F6, and F7 as a key, and we write the subroutines as
ENC4, PRF4, and PRF4′, instead of ENC3, PRF3, and PRF3′. For reference, we present the specification
of SILC4 in Fig. 18 and the subroutines in Fig. 19.

From Lemma 2, we obtain{
Advpriv

SILC3[ℓN ,τ ](A) ≤ Advpriv
SILC4[ℓN ,τ ](A) + 2q2/2n + 4(q + σA)

2/2n,

Advauth
SILC3[ℓN ,τ ](A) ≤ Advauth

SILC4[ℓN ,τ ](A) + 2(q + q′)2 + 4(q + σA + q′ + σA′)2/2n.
(5)
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Algorithm SILC5-EHASH5,PRF5,F4(N,A,M)

1. if |M | = 0 then
2. C ← ε
3. else // |M | ≥ 1
4. SE[1]← HASH5(N,A)
5. C ← ENC5F4(SE[1],M)
6. T ← PRF5(N,A,C)
7. return (C, T )

Algorithm ENC5F4(SE[1],M) // |M | ≥ 1

1. (M [1], . . . ,M [m])
n←M

2. for i← 1 to m− 1 do // only for m ≥ 2
3. C[i]← SE[i]⊕M [i]
4. SE[i+ 1]← F4(fix1(C[i]))
5. C[m]← msb|M [m]|(SE[m])⊕M [m]
6. C ← (C[1], . . . , C[m])
7. return C

Algorithm SILC5-DHASH5,PRF5,F4(N,A,C, T )

1. T ∗ ← PRF5(N,A,C)
2. if T ̸= T ∗ then return ⊥
3. return 1

Fig. 20. Pseudocode of the encryption and the decryption algorithms of SILC5

To see (5), for privacy, suppose that A makes a query (Ni, Ai,Mi). If |Mi| = 0, then B makes a query
(2, Ni, Ai) to obtain SPi[0]. Otherwise, B first makes a query (1, Ni, Ai) to obtain SEi[1], and then
(2, Ni, Ai) to obtain SPi[0]. For authenticity, B behaves as above for encryption queries. For a decryption
query (N ′

j , A
′
j , C

′
j , T

′
j), B makes a query (2, N ′

j , A
′
j) to obtain SPj [0]. We see that the total number of

queries and the total number of associated data length of B are no more than the twice of those of A.

Indistinguishability of PRF4. The syntax of PRF4 is PRF4 : NSILC×ASILC×CSILC → TSILC, and it takes
HASH4′, F6, and F7 as a key. Let PRF5 be a random function with the same syntax as PRF4. We show
that PRF4 is indistinguishable from PRF5. Let B be an adversary, and we define Advind

PRF4(B) as

Advind
PRF4(B)

def
= Pr

[
BPRF4(·,·,·) ⇒ 1

]
− Pr

[
BPRF5(·,·,·) ⇒ 1

]
,

where the first probability is taken over the randomness of HASH4′, F6, F7, and B, and the last is over the
randomness of PRF5 and B. Suppose that B makes q queries, and let (N1, A1, C1), . . . , (Nq, Aq, Cq) be
the queries. Then we define the total ciphertext length as m1 + · · ·+mq, where (Ci[1], . . . , Ci[mi])← Ci.
The same nonce can be repeated across different queries, but without loss of generality, we assume that
B does not repeat a query. We show the following lemma.

Lemma 3. Let B be an adversary that makes at most q queries, where the total ciphertext length is at
most σC . Then we have Advind

PRF4(B) ≤ 0.5q2/2n + (q + σC)
2/2n.

A proof is in Appendix F.

Definition of SILC5. We next define the fifth and the final version SILC5[ℓN , τ ] of SILC[Rand(n), ℓN , τ ].
We note that SILC5[ℓN , τ ] is almost the same as CLOC5[ℓN , τ ] in [10,11]. The encryption algorithm
SILC5-E and the decryption algorithm SILC5-D are obtained from SILC4-E and SILC4-D, respectively,
by using a random function PRF5 instead of PRF4. We write HASH5 for HASH4, and ENC5 for ENC4.
SILC5-E and SILC5-D take HASH5, PRF5, and F4 as a key, where HASH5 : NSILC × ASILC → {0, 1}n,
PRF5 : NSILC ×ASILC ×CSILC → TSILC, and F4 : {0, 1}n → {0, 1}n are all random functions. We present
the complete specification in Fig. 20. From Lemma 3, we obtain{

Advpriv
SILC4[ℓN ,τ ](A) ≤ Advpriv

SILC5[ℓN ,τ ](A) + 0.5q2/2n + (q + σM )2/2n,

Advauth
SILC4[ℓN ,τ ](A) ≤ Advauth

SILC5[ℓN ,τ ](A) + 0.5(q + q′)2/2n + (q + σM + q′ + σC′)2/2n.
(6)

We have (6), since for privacy, if A makes a query (Ni, Ai,Mi), then B obtains a ciphertext Ci using its
own randomness, and makes a query (Ni, Ai, Ci) to obtain a tag Ti. For authenticity, B behaves as above
for encryption queries. For a decryption query (N ′

j , A
′
j , C

′
j , T

′
j), B makes a query (N ′

j , A
′
j , C

′
j) to obtain a

candidate tag.
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Privacy and Authenticity of SILC5. We have the following lemma on the privacy and the authenticity of
SILC5.

Lemma 4. We have Advpriv
SILC5[ℓN ,τ ](A) ≤ σ2

M/2n and Advauth
SILC5[ℓN ,τ ](A) ≤ q′/2τ .

A proof is the same as that of [11, Lemma 4]. We present the proof in Appendix G for completeness.

Proof (of Theorem 1). We now show the proof of Theorem 1. From (1), (3), (4), (5), (6), and Lemma 4,
we obtain

Advpriv
SILC[Perm(n),ℓN ,τ ](A) ≤

σ2
priv

2n
+

2.5q2

2n
+

4(q + σA)
2

2n
+

(q + σM )2

2n
+

σ2
M

2n
≤

5σ2
priv

2n
.

The last inequality follows from σpriv = 3q + σA + 2σM . ⊓⊔

Proof (of Theorem 2). We show the proof of Theorem 2. From (2), (3), (4), (5), (6), and Lemma 4, we
obtain

Advauth
SILC[Perm(n),ℓN ,τ ](A) ≤

σ2
auth

2n
+

2.5(q + q′)2

2n
+

4(q + σA + q′ + σA′)2

2n
+

(q + σM + q′ + σC′)2

2n
+

q′

2τ

≤ 5σ2
auth

2n
+

q′

2τ
,

since σauth = 3q + σA + 2σM + 3q′ + σA′ + σC′ . ⊓⊔

D Proof of Lemma 1

Without loss of generality, we assume that B makes exactly q queries. Let (j1, X1), . . . , (jq, Xq) be the
queries. Now suppose that B interacts with Q = (Q1, . . . , Q7). We say that a bad event occurs and
write BQ1(·),...,Q7(·) sets bad, if there exist two distinct queries (j,X), (j′, X ′) ∈ {(j1, X1), . . . , (jq, Xq)}
such that I(j,X) = I(j′, X ′), where I(j,X) denotes the input value of R for a query Qj(X). That is,
I(1, X), . . . , I(7, X) are defined as follows.

I(1, X) = X

I(2, X) = X ⊕K1

I(3, X) = g(X ⊕K1)

I(4, X) = X

I(5, X) = g(g(X ⊕K1))

I(6, X) = X ⊕K2

I(7, X) = g(X ⊕K2)

The absence of the bad event implies that the responses that B receives from the oracles are uniform
and independent random bit strings, since the output values of R are all independent. We have

Advind
Q (B) ≤ Pr

[
BQ1(·),...,Q7(·) sets bad

]
. (7)

Furthermore, from the argument above, we may without loss of generality assume that the adversary is
non-adaptive, and hence we now fix all queries (j1, X1), . . . , (jq, Xq) made by B, and evaluate the right
hand side of (7) based on the randomness of K1 and K2. Let (j,X), (j′, X ′) ∈ {(j1, X1), . . . , (jq, Xq)}
be two distinct queries. If j = j′, then we have X ̸= X ′, and I(j,X) = I(j′, X ′) never holds from the
invertibility of g. We next consider the case 1 ≤ j < j′ ≤ 7, and we evaluate

Pr[I(j,X) = I(j′, X ′)] (8)

in 21 cases in Fig. 21. We note that when (j, j′) = (1, 4), we have (8) = Pr[0n = X ⊕X ′] = 0 since our
adversary is input-respecting and hence msb1(X) = 0 and msb1(X

′) = 1 hold. For other cases, we have
(8) = 1/2n from the construction of g.
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(j, j′) (8)

(1, 2) Pr[K1 = X ⊕X ′] = 1/2n

(1, 3) Pr[K1 = g−1(X)⊕X ′] = 1/2n

(1, 4) Pr[0n = X ⊕X ′] = 0
(1, 5) Pr[K1 = g−1(g−1(X))⊕X ′] = 1/2n

(1, 6) Pr[K2 = X ⊕X ′] = 1/2n

(1, 7) Pr[K2 = g−1(X)⊕X ′] = 1/2n

(2, 3) Pr[K1 ⊕ g(K1) = X ⊕ g(X ′)] = 1/2n

(2, 4) Pr[K1 = X ⊕X ′] = 1/2n

(2, 5) Pr[K1 ⊕ g(g(K1)) = X ⊕ g(g(X ′))] = 1/2n

(2, 6) Pr[K1 = X ⊕X ′ ⊕K2] = 1/2n

(2, 7) Pr[K1 = X ⊕ g(X ′ ⊕K2)] = 1/2n

(3, 4) Pr[K1 = X ⊕ g−1(X ′)] = 1/2n

(3, 5) Pr[K1 ⊕ g(K1) = X ⊕ g(X ′)] = 1/2n

(3, 6) Pr[K1 = X ⊕ g−1(X ′ ⊕K2)] = 1/2n

(3, 7) Pr[K1 = X ⊕X ′ ⊕K2] = 1/2n

(4, 5) Pr[K1 = g−1(g−1(X))⊕X ′] = 1/2n

(4, 6) Pr[K2 = X ⊕X ′] = 1/2n

(4, 7) Pr[K2 = g−1(X)⊕X ′] = 1/2n

(5, 6) Pr[K1 = X ⊕ g−1(g−1(X ′ ⊕K2))] = 1/2n

(5, 7) Pr[K1 = X ⊕ g−1(X ′ ⊕K2)] = 1/2n

(6, 7) Pr[K2 ⊕ g(K2) = X ⊕ g(X ′)] = 1/2n

Fig. 21. Case analysis of (8)

Algorithm HASH3∗F1,F2
(N,A)

1. SH[0]← F1(zpp(N))
2. if |A| = 0 then
3. Y ← SH[0]⊕ Len(A) // Len(A) = 0n

4. return Y
5. (A[1], . . . , A[a])

n← A
6. for i← 1 to a− 1 do
7. SH[i]← F2(SH[i− 1]⊕A[i])
8. SH[a]← F2(SH[a− 1]⊕ zap(A[a]))
9. Y ← SH[a]⊕ Len(A)

10. return Y

Fig. 22. Definition of HASH3∗ used in the proof of Lemma 2

Finally, we evaluate the probability of the bad event. From the analysis above, for any two distinct
queries (j,X), (j′, X ′) ∈ {(j1, X1), . . . , (jq, Xq)}, we have Pr [I(j,X) = I(j′, X ′)] ≤ 1/2n. Therefore, we
obtain

Pr
[
BQ1(·),...,Q7(·) sets bad

]
≤

∑
1≤i<i′≤q

1

2n
≤ 0.5q2

2n

as claimed. ⊓⊔

E Proof of Lemma 2

Without loss of generality, we assume that the adversary B makes exactly q queries, which are written as
(j1, N1, A1), . . . , (jq, Nq, Aq). Suppose that B interacts with HASH3 and HASH3′. We say that a bad event

occurs and write BHASH3(·,·),HASH3′(·,·) sets bad, if there exist two distinct queries (j,N,A), (j′, N ′, A′) ∈
{(j1, N1, A1), . . . , (jq, Nq, Aq)} such that

– j = j′, and
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– HASH3∗(N,A) = HASH3∗(N ′, A′),

where HASH3∗ is defined in Fig. 22. It takes N and A as input, and HASH3∗ outputs the input value of
the last invocation of the random function in HASH3 or HASH3′. The absence of the bad event implies
that the responses that B receives from the oracles are uniform and independent random bit strings.
Therefore, we have

Advind
HASH3,HASH3′(B) ≤ Pr

[
BHASH3(·,·),HASH3′(·,·) sets bad

]
. (9)

We may now without loss of generality assume that the adversary is non-adaptive. We fix all queries
(j1, N1, A1), . . . , (jq, Nq, Aq) made by B, and evaluate the right hand side of (9) based on the randomness
of F1 and F2. Let (j,N,A), (j′, N ′, A′) ∈ {(j1, N1, A1), . . . , (jq, Nq, Aq)} be two distinct queries such that
j = j′. In what follows, we evaluate

Pr [HASH3∗(N,A) = HASH3∗(N ′, A′)] . (10)

In order to evaluate (10), we introduce a lemma shown by Black and Rogaway [4]. Let M,M ′ ∈ {0, 1}∗
be two distinct strings such that |M | = ℓn and |M ′| = ℓ′n, where ℓ, ℓ′ ≥ 1. Let the partitions be

(M [1], . . . ,M [ℓ])
n← M and (M ′[1], . . . ,M ′[ℓ′])

n← M ′. Let F
$← Rand(n) be a random function. We

define CBCF (M) as S[ℓ], where S[i] ← F (S[i − 1] ⊕M [i]) for i = 1, . . . , ℓ and S[0] = 0n. We define
CBCF (M

′) analogously. Let COLLF (M,M ′) denote the event CBCF (M) = CBCF (M
′). The following

lemma shows the upper bound on the probability of COLLF (M,M ′).

Lemma 5 ([4]). Pr [COLLF (M,M ′)] ≤ ℓℓ′/2n +max{ℓ, ℓ′}/2n, where the probability is taken over F
$←

Rand(n).

Now for two distinct queries (j,N,A), (j′, N ′, A′) ∈ {(j1, N1, A1), . . . , (jq, Nq, Aq)}, let (A[1], . . . , A[a])
n←

A and (A′[1], . . . , A′[a′])
n← A′ be the partition. For N and A = (A[1], . . . , A[a]), we consider M =

(M [1], . . . ,M [ℓ]) defined as

M ←


F1(zpp(N))⊕ Len(A) if |A| = 0,

(F1(zpp(N))⊕ zap(A[1]), Len(A)) if 1 ≤ |A| ≤ n,

(F1(zpp(N))⊕A[1], A[2], . . . , A[a− 1], zap(A[a]), Len(A)) if |A| ≥ n+ 1.

We note that ℓ = ⌈|A|/n⌉ + 1 holds, and we define M ′ = (M ′[1], . . . ,M ′[ℓ′]) from N ′ and A′ =
(A′[1], . . . , A′[a′]) analogously.

Now we see that if HASH3∗(N,A) = HASH3∗(N ′, A′) holds, then COLLF (M,M ′) holds, which is
CBCF (M) = CBCF (M

′), by setting F ← F2. However, the converse may not be true since we may
have COLLF (M,M ′) even if HASH3∗(N,A) ̸= HASH3∗(N ′, A′). Now we evaluate (10) in two cases, Case
N = N ′, and Case N ̸= N ′.

Case N = N ′. We arbitrarily fix F1. We have M ̸= M ′ from A ̸= A′, and hence by using Lemma 5 with
F ← F2, we obtain

(10) ≤ Pr [COLLF (M,M ′)] ≤ ℓℓ′

2n
+

max{ℓ, ℓ′}
2n

,

where ℓ = ⌈|A|/n⌉+ 1 and ℓ′ = ⌈|A′|/n⌉+ 1.

Case N ̸= N ′. We have

(10) ≤ Pr [COLLF (M,M ′) and M [1] = M ′[1]] + Pr [COLLF (M,M ′) and M [1] ̸= M ′[1]]

≤ Pr [M [1] = M ′[1]] + Pr [COLLF (M,M ′) |M [1] ̸= M ′[1]] ,

and we also have Pr [COLLF (M,M ′) |M [1] ̸= M ′[1]] ≤ ℓℓ′/2n + max{ℓ, ℓ′}/2n, where ℓ = ⌈|A|/n⌉ + 1
and ℓ′ = ⌈|A′|/n⌉ + 1, from Lemma 5. It remains to evaluate Pr [M [1] = M ′[1]]. M [1] is obtained as
F1(zpp(N)) ⊕ Z, where Z ∈ {Len(A), zap(A[1]), A[1]} depending on the length of A. Similarly, M ′[1] =
F1(zpp(N

′))⊕Z ′, where Z ′ ∈ {Len(A′), zap(A′[1]), A′[1]}, and we are interested in the event F1(zpp(N))⊕
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Z = F1(zpp(N
′))⊕Z ′. Since N ̸= N ′, we have zpp(N) ̸= zpp(N ′), and hence we have Pr [M [1] = M ′[1]] =

1/2n. Therefore, we have

(10) ≤ 1

2n
+

ℓℓ′

2n
+

max{ℓ, ℓ′}
2n

,

where ℓ = ⌈|A|/n⌉+ 1 and ℓ′ = ⌈|A′|/n⌉+ 1.

Finally, we evaluate the probability of the bad event. From the analyses above, for any two dis-
tinct queries (j,N,A), (j′, N ′, A′) ∈ {(j1, N1, A1), . . . , (jq, Nq, Aq)}, we have (10) ≤ 1/2n + ℓℓ′/2n +
max{ℓ, ℓ′}/2n for both cases. We obtain

Pr
[
BHASH3(·,·),HASH3′(·,·) sets bad

]
≤

∑
1≤i<i′≤q

1

2n
+

ℓiℓi′

2n
+

max{ℓi, ℓi′}
2n

≤ 0.5q2

2n
+

(∑
1≤i≤q ℓi

)2

2n

≤ 0.5q2

2n
+

(q + σA)
2

2n
,

where ℓi = ⌈|Ai|/n⌉ + 1 and ℓi′ = ⌈|Ai′ |/n⌉ + 1, and the second last inequality follows from ℓi ≤ ai + 1
and the proof of [4, Theorem 4]. ⊓⊔

F Proof of Lemma 3

For reference, we first present a figure of T ← PRF4HASH4′,F6,F7
(N,A,C) in Fig. 23. The proof is similar

to that of Lemma 2 in Appendix. E.

· · ·

· · ·

C[m]C[m− 1]C[1] C[2] Len(C)

msb

T

SP[0]

Len(C)

msb

T

F6 F7F7 F6F6F6 F6

N

HASH4

A

SP[0]

N

HASH4

A

zap

Fig. 23. T ← PRF4HASH4′,F6,F7
(N,A,C) for |C| = 0 (left), and |C| ≥ 1 (right). We have Len(C) = 0n in the left

figure.

Without loss of generality, we assume that B makes exactly q queries, and we write the queries as
(N1, A1, C1), . . . , (Nq, Aq, Cq). Consider the case where B interacts with PRF4, and we say that a bad
event occurs and write BPRF4(·,·,·) sets bad, if there exist two distinct queries (N,A,C), (N ′, A′, C ′) ∈
{(N1, A1, C1), . . . , (Nq, Aq, Cq)} such that I = I ′, where I and I ′ denote the input values of F7 for
(N,A,C) and (N ′, A′, C ′), respectively. Specifically, I = SP[0] ⊕ Len(C) when |C| = 0 (line 2 of Al-
gorithm PRF4′F6,F7

(SP[0], C) in Fig. 19), and I = SP[m] ⊕ Len(C) when |C| ≥ 1 (line 9 of Algorithm

PRF4′F6,F7
(SP[0], C) in Fig. 19). I ′ is similarly defined. The absence of the bad event implies that the

responses that A receives are random bit strings. Therefore, we have

Advind
PRF4(B) ≤ Pr

[
BPRF4(·,·,·) sets bad

]
. (11)

We may assume that B is non-adaptive, so we now fix all queries (N1, A1, C1), . . . , (Nq, Aq, Cq), and
evaluate the right hand side of (11). Let (N,A,C), (N ′, A′, C ′) ∈ {(N1, A1, C1), . . . , (Nq, Aq, Cq)} be
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two distinct queries, where (C[1], . . . , C[m])
n← C and (C ′[1], . . . , C ′[m′])

n← C ′. For (N,A) and C =
(C[1], . . . , C[m]), define M = (M [1], . . . ,M [ℓ]) as

M ←


HASH4′(N,A)⊕ Len(C) if |C| = 0,

(HASH4′(N,A)⊕ zap(C[1]), Len(C)) if 1 ≤ |C| ≤ n,

(HASH4′(N,A)⊕ C[1], C[2], . . . , C[m− 1], zap(C[m]), Len(C)) if |C| ≥ n+ 1.

We have ℓ = ⌈|C|/n⌉ + 1, and we similarly define M ′ = (M ′[1], . . . ,M ′[ℓ′]) from (N ′, A′) and C ′ =
(C ′[1], . . . , C ′[m′]).

Now we see that if I = I ′ holds, then we have CBCF (M) = CBCF (M
′), i.e., we have COLLF (M,M ′),

by substituting F ← F2. We next evaluate Pr[I = I ′] in two cases, Case (N,A) = (N ′, A′), and Case
(N,A) ̸= (N ′, A′).

Case (N,A) = (N ′, A′). We arbitrarily fix HASH4′. Then we have M ̸= M ′ from C ̸= C ′, and we use
Lemma 5 with F ← F2 to see

Pr[I = I ′] ≤ Pr [COLLF (M,M ′)] ≤ ℓℓ′

2n
+

max{ℓ, ℓ′}
2n

,

where ℓ = ⌈|C|/n⌉+ 1 and ℓ′ = ⌈|C ′|/n⌉+ 1.

Case (N,A) ̸= (N ′, A′). We proceed as follows.

Pr[I = I ′] ≤ Pr [COLLF (M,M ′) and M [1] = M ′[1]] + Pr [COLLF (M,M ′) and M [1] ̸= M ′[1]]

≤ Pr [M [1] = M ′[1]] + Pr [COLLF (M,M ′) |M [1] ̸= M ′[1]]

We first evaluate the last term. We use Lemma 5 to have Pr [COLLF (M,M ′) |M [1] ̸= M ′[1]] ≤ ℓℓ′/2n +
max{ℓ, ℓ′}/2n, where ℓ = ⌈|C|/n⌉ + 1 and ℓ′ = ⌈|C ′|/n⌉ + 1. We next evaluate Pr [M [1] = M ′[1]]. M [1]
is obtained as HASH4′(N,A)⊕ Z, where the value of Z ∈ {Len(C), zap(C[1]), C[1]} depends on |C|, and
M ′[1] is obtained as HASH4′(N ′, A′) ⊕ Z ′, where Z ′ ∈ {Len(C ′), zap(C ′[1]), C ′[1]}. The event M [1] =
M ′[1] is equivalent to HASH4′(N,A) ⊕ Z = HASH4′(N ′, A′) ⊕ Z ′, and since (N,A) ̸= (N ′, A′), we have
Pr [M [1] = M ′[1]] = 1/2n. Therefore, we have

Pr[I = I ′] ≤ 1

2n
+

ℓℓ′

2n
+

max{ℓ, ℓ′}
2n

,

where ℓ = ⌈|C|/n⌉+ 1 and ℓ′ = ⌈|C ′|/n⌉+ 1.
Now we are ready to evaluate the probability of the bad event. For any two distinct queries (N,A,C),

(N ′, A′, C ′) ∈ {(N1, A1, C1), . . . , (Nq, Aq, Cq)}, for both cases, we have Pr[I = I ′] ≤ 1/2n + ℓℓ′/2n +
max{ℓ, ℓ′}/2n. Therefore, we obtain

Pr
[
BPRF4(·,·,·) sets bad

]
≤

∑
1≤i<i′≤q

1

2n
+

ℓiℓi′

2n
+

max{ℓi, ℓi′}
2n

≤ 0.5q2

2n
+

(∑
1≤i≤q ℓi

)2

2n

≤ 0.5q2

2n
+

(q + σC)
2

2n
,

where ℓi = ⌈|Ci|/n⌉ + 1 and ℓi′ = ⌈|Ci′ |/n⌉ + 1. The second last inequality uses ℓi ≤ mi + 1, where
(Ci[1], . . . , Ci[mi])

n← Ci, and the proof of [4, Theorem 4]. ⊓⊔

G Proof of Lemma 4

Privacy of SILC5. First, we consider the privacy of SILC5, and assume that A interacts with SILC5-E .
Let (Ni, Ai,Mi) be the i-th query, and (Ci, Ti) be the response, where (Ci[1], . . . , Ci[mi])

n← Ci. Recall
that if |Ci| = 0, then mi = 1 and Ci[1] = ε. Let Ii be the set of input values of F4 for the i-th query.
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Specifically, we have Ii = {fix1(Ci[1]), . . . , fix1(Ci[mi − 1])}. Note that Ii = ∅ if 0 ≤ |Ci| ≤ n. We say
that a bad event occurs and write ASILC5-E(·,·,·) sets bad if, for some 1 ≤ i ≤ q and 1 ≤ j ≤ mi − 1, we
have

fix1(Ci[j]) ∈ I1 ∪ · · · ∪ Ii−1 ∪ {fix1(Ci[1]), . . . , fix1(Ci[j − 1])}. (12)

If (12) holds, then we say that Ci[j] causes the bad event. The absence of the bad event implies that the
responses that A receives are uniform random bit strings. We therefore have

Advpriv
SILC5[ℓN ,τ ](A) ≤ Pr

[
ASILC5-E(·,·,·) sets bad

]
.

Now assume that C1[1], . . . , C1[m1 − 1], . . . , Ci−1[1], . . . , Ci−1[mi−1 − 1], Ci[1], . . . , Ci[j − 1] do not cause
the bad event. Then we see that fix1(Ci[j]) is a uniform random string of (n− 1) bits. We also see that
C1[1], . . . , Cq[1] are all random bits from the nonce-respecting assumption on A, and other values are ran-
dom bits from the randomness of F4. Therefore, we obtain the upper bound on Pr

[
ASILC5-E(·,·,·) sets bad

]
as ∑

1≤i≤q

∑
1≤j≤mi−1

m1 − 1

2n−1
+ · · ·+ mi−1 − 1

2n−1
+

j − 1

2n−1
≤

∑
0≤ℓ≤σM−1

ℓ

2n−1
≤ σ2

M

2n
,

and therefore, we obtain Advpriv
SILC5[ℓN ,τ ](A) ≤ σ2

M/2n.

Authenticity of SILC5. Finally, we analyze the authenticity of SILC5. Consider the j-th decryption
query (N ′

j , A
′
j , C

′
j , T

′
j), and suppose that, prior to this decryption query, A made i encryption queries and

obtained the responses. Let (N1, A1,M1, C1, T1), . . . , (Ni, Ai,Mi, Ci, Ti) be the list of the queries and the
responses. Now (N ′

j , A
′
j , C

′
j) ̸∈ {(N1, A1, C1), . . . , (Ni, Ai, Ci)} holds, since otherwise A does not succeed.

This implies that, each time A makes a decryption query, A has to guess the output value of PRF5 for a
new input value. Since A makes at most q′ decryption queries, we have Advauth

SILC5[ℓN ,τ ](A) ≤ q′/2τ . ⊓⊔

H Changes

H.1 Changes from SILC v1 to SILC v2

The specification of SILC v2 uses param so that the encryption and decryption algorithms depend on the
choice of the parameters, which are E, ℓN , and τ . This type of dependency was previously highlighted,
e.g., in [8,17,22]. The same notes as CLOC v2 apply here. We repeat them for completeness.

– The introduction of param does not mean that SILC v2 handles variable length nonces nor variable
length tags. All the parameters, E, ℓN , and τ , have to be fixed during the lifetime of the secret key.

– The introduction of param does not affect the provable security result of SILC, since we may consider
param ∥N as a nonce, and then the provable security results in [13], also presented in Sect. 3, still
hold.

– We also note that param does not remove the dependency to other blockcipher modes of operation.
For instance the concurrent use (with the same secret key) of SILC and ECB mode results in the loss
of security. Similarly, SILC and CLOC cannot be used concurrently.

The following part of the document was updated.

– The condition on the nonce length was updated to 1 ≤ ℓN ≤ n− 9 to handle param.
– The first line in the definition of HASH in Fig. 2 was updated to concatenate param to N .
– Figures 3 and 6 were updated.
– Sect. 1.3 was updated. The parameter space was reduced so that different parameters can be encoded

into param, and Table 1 was added.
– Security theorems were added in Sect. 3, and the proofs were presented in Appendices C, D, E, F,

and G.
– We also made minor changes.
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